Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron S. Brewster is active.

Publication


Featured researches published by Aaron S. Brewster.


Nature | 2015

Structure of the toxic core of α-synuclein from invisible crystals

Jose A. Rodriguez; Magdalena I. Ivanova; Michael R. Sawaya; Duilio Cascio; Francis E. Reyes; Dan Shi; Smriti Sangwan; Elizabeth L. Guenther; Lisa M. Johnson; Meng Zhang; Lin Jiang; Mark A. Arbing; Brent L. Nannenga; Johan Hattne; Julian P. Whitelegge; Aaron S. Brewster; M. Messerschmidt; Sébastien Boutet; Nicholas K. Sauter; Tamir Gonen; David Eisenberg

The protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates that this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.


Nature Communications | 2014

Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy

Jan Kern; Rosalie Tran; Roberto Alonso-Mori; Sergey Koroidov; Nathaniel Echols; Johan Hattne; Mohamed Ibrahim; Sheraz Gul; Hartawan Laksmono; Raymond G. Sierra; Richard J. Gildea; Guangye Han; Julia Hellmich; Benedikt Lassalle-Kaiser; Ruchira Chatterjee; Aaron S. Brewster; Claudiu A. Stan; Carina Glöckner; Alyssa Lampe; Dörte DiFiore; Despina Milathianaki; Alan Fry; M. Marvin Seibert; Jason E. Koglin; Erik Gallo; Jens Uhlig; Dimosthenis Sokaras; Tsu-Chien Weng; Petrus H. Zwart; David E. Skinner

The dioxygen we breathe is formed from water by its light-induced oxidation in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction center is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2 flash (2F) and 3 flash (3F) photosystem II samples, and of a transient 3F′ state (250 μs after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn-reduction, does not yet occur within 250 μs after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II.


Nature | 2015

Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis.

Qiangjun Zhou; Ying Lai; Taulant Bacaj; Minglei Zhao; Artem Y. Lyubimov; Monarin Uervirojnangkoorn; Oliver B. Zeldin; Aaron S. Brewster; Nicholas K. Sauter; Aina E. Cohen; S. Michael Soltis; Roberto Alonso-Mori; Matthieu Chollet; Henrik T. Lemke; Richard A. Pfuetzner; Ucheor B. Choi; William I. Weis; Jiajie Diao; Thomas C. Südhof; Axel T. Brunger

Synaptotagmin-1 and neuronal SNARE proteins have central roles in evoked synchronous neurotransmitter release; however, it is unknown how they cooperate to trigger synaptic vesicle fusion. Here we report atomic-resolution crystal structures of Ca2+- and Mg2+-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free-electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many side chains. The structures reveal several interfaces, including a large, specific, Ca2+-independent and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca2+-triggered neurotransmitter release in mouse hippocampal neuronal synapses and for Ca2+-triggered vesicle fusion in a reconstituted system. We propose that this interface forms before Ca2+ triggering, moves en bloc as Ca2+ influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces.


Nature | 2016

Structure of photosystem II and substrate binding at room temperature.

Iris D. Young; Mohamed Ibrahim; Ruchira Chatterjee; Sheraz Gul; Franklin Fuller; Sergey Koroidov; Aaron S. Brewster; Rosalie Tran; Roberto Alonso-Mori; Thomas Kroll; Tara Michels-Clark; Hartawan Laksmono; Raymond G. Sierra; Claudiu A. Stan; Rana Hussein; Miao Zhang; Lacey Douthit; Markus Kubin; Casper de Lichtenberg; Long Vo Pham; Håkan Nilsson; Mun Hon Cheah; Dmitriy Shevela; Claudio Saracini; Mackenzie A. Bean; Ina Seuffert; Dimosthenis Sokaras; Tsu-Chien Weng; Ernest Pastor; Clemens Weninger

Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O–O bond formation and O2 evolution. A detailed understanding of the O–O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O–O bond formation mechanisms.


Nature Methods | 2014

Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

Johan Hattne; Nathaniel Echols; Rosalie Tran; Jan Kern; Richard J. Gildea; Aaron S. Brewster; Roberto Alonso-Mori; Carina Glöckner; Julia Hellmich; Hartawan Laksmono; Raymond G. Sierra; Benedikt Lassalle-Kaiser; Alyssa Lampe; Guangye Han; Sheraz Gul; Dörte DiFiore; Despina Milathianaki; Alan Fry; A. Miahnahri; William E. White; Donald W. Schafer; M. Marvin Seibert; Jason E. Koglin; Dimosthenis Sokaras; Tsu-Chien Weng; Jonas A. Sellberg; Matthew J. Latimer; Pieter Glatzel; Petrus H. Zwart; Ralf W. Grosse-Kunstleve

X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Goniometer-based femtosecond crystallography with X-ray free electron lasers

Aina E. Cohen; S. Michael Soltis; Ana Gonzalez; Laura Aguila; Roberto Alonso-Mori; Christopher O. Barnes; Elizabeth L. Baxter; Winnie Brehmer; Aaron S. Brewster; Axel T. Brunger; Guillermo Calero; Joseph F. Chang; Matthieu Chollet; Paul Ehrensberger; Thomas Eriksson; Yiping Feng; Johan Hattne; Britt Hedman; Michael Hollenbeck; James M. Holton; Stephen Keable; Brian K. Kobilka; Elena G. Kovaleva; Andrew C. Kruse; Henrik T. Lemke; Guowu Lin; Artem Y. Lyubimov; Aashish Manglik; Irimpan I. Mathews; Scott E. McPhillips

Significance The extremely short and bright X-ray pulses produced by X-ray free-electron lasers unlock new opportunities in crystallography-based structural biology research. Efficient methods to deliver crystalline material are necessary due to damage or destruction of the crystal by the X-ray pulse. Crystals for the first experiments were 5 µm or smaller in size, delivered by a liquid injector. We describe a highly automated goniometer-based approach, compatible with crystals of larger and varied sizes, and accessible at cryogenic or ambient temperatures. These methods, coupled with improvements in data-processing algorithms, have resulted in high-resolution structures, unadulterated by the effects of radiation exposure, from only 100 to 1,000 diffraction images. The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam

Michael R. Sawaya; Duilio Cascio; Mari Gingery; José A. Rodriguez; Lukasz Goldschmidt; Jacques-Philippe Colletier; Marc Messerschmidt; Sébastien Boutet; Jason E. Koglin; Garth J. Williams; Aaron S. Brewster; Karol Nass; Johan Hattne; Sabine Botha; R. Bruce Doak; Robert L. Shoeman; Daniel P. DePonte; Brian A. Federici; Nicholas K. Sauter; Ilme Schlichting; David Eisenberg

Significance In vivo microcrystals have been observed in prokaryotic and eukaryotic cells. With rare exception, however, the ∼100,000 biological structures determined by X-ray crystallography to date have required the macromolecule under study to be extracted from the cells that produced it and crystallized in vitro. In vivo crystals present a challenge for structure determination and pose the question of the extent to which in vivo macromolecular structures are similar to those of extracted and recrystallized macromolecules. Here we show that serial femtosecond crystallography enabled by a free-electron laser yields the structure of in vivo crystals, as they exist in a living cell, and in this case the in vivo structure is essentially identical to the structure of extracted and recrystallized protein. It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information.


eLife | 2015

Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

Monarin Uervirojnangkoorn; Oliver B. Zeldin; Artem Y. Lyubimov; Johan Hattne; Aaron S. Brewster; Nicholas K. Sauter; Axel T. Brunger; William I. Weis

There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001


Acta Crystallographica Section D-biological Crystallography | 2015

Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams.

Nicolas Coquelle; Aaron S. Brewster; Ulrike Kapp; Anastasya Shilova; Britta Weinhausen; Manfred Burghammer; Jacques-Philippe Colletier

A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced.


Acta Crystallographica Section D-biological Crystallography | 2016

Diffraction‐geometry refinement in the DIALS framework

David G. Waterman; Graeme Winter; Richard J. Gildea; James M. Parkhurst; Aaron S. Brewster; Nicholas K. Sauter; Gwyndaf Evans

A comprehensive description of the methods used within the DIALS framework for diffraction-geometry refinement using predicted reflection centroids is given. Examples of the advanced features of the software are provided.

Collaboration


Dive into the Aaron S. Brewster's collaboration.

Top Co-Authors

Avatar

Nicholas K. Sauter

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Johan Hattne

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Roberto Alonso-Mori

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Iris D. Young

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jan Kern

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sheraz Gul

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gwyndaf Evans

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge