Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron S. G. Robotham is active.

Publication


Featured researches published by Aaron S. G. Robotham.


Monthly Notices of the Royal Astronomical Society | 2011

Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release

Simon P. Driver; D. T. Hill; Lee S. Kelvin; Aaron S. G. Robotham; J. Liske; Peder Norberg; Ivan K. Baldry; Steven P. Bamford; Andrew M. Hopkins; J. Loveday; J. A. Peacock; E. Andrae; Joss Bland-Hawthorn; S. Brough; Michael J. I. Brown; Ewan Cameron; J. H. Y. Ching; Matthew Colless; Christopher J. Conselice; Scott M. Croom; N. J. G. Cross; R. De Propris; S. Dye; Michael J. Drinkwater; S. Ellis; Alister W. Graham; M. W. Grootes; M. L. P. Gunawardhana; D. H. Jones; E. van Kampen

The Galaxy and Mass Assembly (GAMA) survey has been operating since 2008 February on the 3.9-m Anglo-Australian Telescope using the AAOmega fibre-fed spectrograph facility to acquire spectra with a resolution of R ≈ 1300 for 120 862 Sloan Digital Sky Survey selected galaxies. The target catalogue constitutes three contiguous equatorial regions centred at 9h (G09), 12h (G12) and 14.5h (G15) each of 12 × 4 deg2 to limiting fluxes of rpet < 19.4, rpet < 19.8 and rpet <19.4 mag, respectively (and additional limits at other wavelengths). Spectra and reliable redshifts have been acquired for over 98 per cent of the galaxies within these limits. Here we present the survey footprint, progression, data reduction, redshifting, re-redshifting, an assessment of data quality after 3 yr, additional image analysis products (including ugrizYJHK photometry, S´ersic profiles and photometric redshifts), observing mask and construction of our core survey catalogue (GamaCore). From this we create three science-ready catalogues: GamaCoreDR1 for public release, which includes data acquired during year 1 of operations within specified magnitude limits (2008 February to April); GamaCoreMainSurvey containing all data above our survey limits for use by the GAMA Team and collaborators; and GamaCore-AtlasSV containing year 1, 2 and 3 data matched to Herschel-ATLAS science demonstration data. These catalogues along with the associated spectra, stamps and profiles can be accessed via the GAMA website: http://www.gama-survey.org/


Monthly Notices of the Royal Astronomical Society | 2015

Galaxy And Mass Assembly (GAMA): end of survey report and data release 2

J. Liske; Ivan K. Baldry; Simon P. Driver; Richard J. Tuffs; Mehmet Alpaslan; E. Andrae; Sarah Brough; Michelle E. Cluver; M. W. Grootes; M. L. P. Gunawardhana; Lee S. Kelvin; J. Loveday; Aaron S. G. Robotham; Edward N. Taylor; Steven P. Bamford; Joss Bland-Hawthorn; Michael J. I. Brown; Michael J. Drinkwater; Andrew M. Hopkins; Martin Meyer; Peder Norberg; J. A. Peacock; Nicola K. Agius; Stephen K. Andrews; Amanda E. Bauer; J. H. Y. Ching; Matthew Colless; Christopher J. Conselice; Scott M. Croom; Luke J. M. Davies

The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low redshift galaxies. Covering an area of ∼286 deg2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238 000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm–1 m. Here, we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release, we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component Sersic fits, stellar masses, Hα-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72 225 objects in total). The data base serving these data is available at http://www.gama-survey.org/.


Monthly Notices of the Royal Astronomical Society | 2015

The SAMI Galaxy Survey: instrument specification and target selection

Julia J. Bryant; Matt S. Owers; Aaron S. G. Robotham; Scott M. Croom; Simon P. Driver; Michael J. Drinkwater; Nuria P. F. Lorente; Luca Cortese; Nicholas Scott; Matthew Colless; Adam L. Schaefer; Edward N. Taylor; I. S. Konstantopoulos; J. T. Allen; Ivan K. Baldry; Luke A. Barnes; Amanda E. Bauer; Joss Bland-Hawthorn; J. V. Bloom; Alyson M. Brooks; Sarah Brough; Gerald Cecil; Warrick J. Couch; Darren J. Croton; Roger L. Davies; Simon C. Ellis; L. M. R. Fogarty; Caroline Foster; Karl Glazebrook; Michael Goodwin

The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi- object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope (AAT) in a 3-year survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12, and 14.5 hours, and cover a total of 144 square degrees (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2dFGRS and SDSS and photometry in regions covered by the Sloan Digital Sky Survey (SDSS) and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107– 1012M⊙, and environments from isolated field galaxies through groups to clusters of _ 1015M⊙.


Monthly Notices of the Royal Astronomical Society | 2011

Herschel ⋆ -ATLAS: Rapid evolution of dust in galaxies over the last 5 billion years

Loretta Dunne; Haley Louise Gomez; E. da Cunha; S. Charlot; Simon Dye; Stephen Anthony Eales; Steve Maddox; K. Rowlands; D. J. B. Smith; Robbie Richard Auld; M. Baes; D. G. Bonfield; N. Bourne; S. Buttiglione; A. Cava; D. L. Clements; K. Coppin; A. Cooray; Aliakbar Dariush; G. De Zotti; Simon P. Driver; J. Fritz; J. E. Geach; R. Hopwood; E. Ibar; R. J. Ivison; M. J. Jarvis; Lee S. Kelvin; Enzo Pascale; Michael Pohlen

We present the first direct and unbiased measurement of the evolution of the dust mass function of galaxies over the past 5 billion years of cosmic history using data from the Science Demonstration Phase of the Herschel-Astrophysical Terahertz Large Area Survey (Herschel-ATLAS). The sample consists of galaxies selected at 250 m which have reliable counterparts from the Sloan Digital Sky Survey (SDSS) at z < 0.5, and contains 1867 sources. Dust masses are calculated using both a single-temperature grey-body model for the spectral energy distribution and also a model with multiple temperature components. The dust temperature for either model shows no trend with redshift. Splitting the sample into bins of redshift reveals a strong evolution in the dust properties of the most massive galaxies. At z= 0.4–0.5, massive galaxies had dust masses about five times larger than in the local Universe. At the same time, the dust-to-stellar mass ratio was about three to four times larger, and the optical depth derived from fitting the UV-sub-mm data with an energy balance model was also higher. This increase in the dust content of massive galaxies at high redshift is difficult to explain using standard dust evolution models and requires a rapid gas consumption time-scale together with either a more top-heavy initial mass function (IMF), efficient mantle growth, less dust destruction or combinations of all three. This evolution in dust mass is likely to be associated with a change in overall interstellar medium mass, and points to an enhanced supply of fuel for star formation at earlier cosmic epochs.


Monthly Notices of the Royal Astronomical Society | 2011

Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function

M. L. P. Gunawardhana; Andrew M. Hopkins; Rob Sharp; S. Brough; Edward N. Taylor; Joss Bland-Hawthorn; Claudia Maraston; Richard J. Tuffs; Cristina Popescu; D. Wijesinghe; D. H. Jones; Scott M. Croom; Elaine M. Sadler; Stephen M. Wilkins; Simon P. Driver; J. Liske; Peder Norberg; Ivan K. Baldry; Steven P. Bamford; Jon Loveday; J. A. Peacock; Aaron S. G. Robotham; Daniel B. Zucker; Quentin A. Parker; Christopher J. Conselice; Ewan Cameron; Carlos S. Frenk; D. T. Hill; Lee S. Kelvin; K. Kuijken

The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than 50 yr, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy and Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF–star formation rate dependency is discovered, which shows that highly star-forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations suggesting a variation of or evolution in the IMF.


arXiv: Cosmology and Nongalactic Astrophysics | 2010

Herschel-ATLAS: counterparts from the UV--NIR in the science demonstration phase catalogue

D. J. B. Smith; Loretta Dunne; Stephen J. Maddox; S. Eales; D. G. Bonfield; M. J. Jarvis; William J. Sutherland; S. Fleuren; E. Rigby; M. A. Thompson; Ivan K. Baldry; Steven P. Bamford; S. Buttiglione; A. Cava; D. L. Clements; A. Cooray; Scott M. Croom; A. Dariush; G. De Zotti; Simon P. Driver; J. S. Dunlop; J. Fritz; D. T. Hill; Andrew M. Hopkins; R. Hopwood; E. Ibar; R. J. Ivison; D. H. Jones; Lee S. Kelvin; L. Leeuw

We present a technique to identify optical counterparts of 250-μm-selected sources from the Herschel–ATLAS survey. Of the 6621 250 μm > 32-mJy sources in our science demonstration catalogue we find that ∼60 per cent have counterparts brighter than r  = 22.4 mag in the Sloan Digital Sky Survey. Applying a likelihood ratio technique we are able to identify 2423 of the counterparts with a reliability R > 0.8. This is approximately 37 per cent of the full 250-μm catalogue. We have estimated photometric redshifts for each of these 2423 reliable counterparts, while 1099 also have spectroscopic redshifts collated from several different sources, including the GAMA survey. We estimate the completeness of identifying counterparts as a function of redshift, and present evidence that 250-μm-selected Herschel–ATLAS galaxies have a bimodal redshift distribution. Those with reliable optical identifications have a redshift distribution peaking at z ≈ 0.25 ± 0.05, while submillimetre colours suggest that a significant fraction with no counterpart above the r-band limit have z  > 1. We also suggest a method for selecting populations of strongly lensed high-redshift galaxies. Our identifications are matched to UV–NIR photometry from the GAMA survey, and these data are available as part of the Herschel–ATLAS public data release.


Monthly Notices of the Royal Astronomical Society | 2011

Herschel-ATLAS: counterparts from the ultraviolet-near-infrared in the science demonstration phase catalogue

D. J. B. Smith; Loretta Dunne; Steve Maddox; Stephen Anthony Eales; D. G. Bonfield; M. J. Jarvis; W. Sutherland; S. Fleuren; E. Rigby; M. A. Thompson; Ivan K. Baldry; Steven P. Bamford; S. Buttiglione; A. Cava; D. L. Clements; A. Cooray; Scott M. Croom; Aliakbar Dariush; G. De Zotti; Simon P. Driver; James Dunlop; J. Fritz; D. T. Hill; Andrew M. Hopkins; R. Hopwood; E. Ibar; R. J. Ivison; D. H. Jones; Lee S. Kelvin; L. Leeuw

We present a technique to identify optical counterparts of 250-μm-selected sources from the Herschel–ATLAS survey. Of the 6621 250 μm > 32-mJy sources in our science demonstration catalogue we find that ∼60 per cent have counterparts brighter than r  = 22.4 mag in the Sloan Digital Sky Survey. Applying a likelihood ratio technique we are able to identify 2423 of the counterparts with a reliability R > 0.8. This is approximately 37 per cent of the full 250-μm catalogue. We have estimated photometric redshifts for each of these 2423 reliable counterparts, while 1099 also have spectroscopic redshifts collated from several different sources, including the GAMA survey. We estimate the completeness of identifying counterparts as a function of redshift, and present evidence that 250-μm-selected Herschel–ATLAS galaxies have a bimodal redshift distribution. Those with reliable optical identifications have a redshift distribution peaking at z ≈ 0.25 ± 0.05, while submillimetre colours suggest that a significant fraction with no counterpart above the r-band limit have z  > 1. We also suggest a method for selecting populations of strongly lensed high-redshift galaxies. Our identifications are matched to UV–NIR photometry from the GAMA survey, and these data are available as part of the Herschel–ATLAS public data release.


Monthly Notices of the Royal Astronomical Society | 2015

The SAMI Galaxy Survey: Early Data Release

J. T. Allen; Scott M. Croom; I. S. Konstantopoulos; Julia J. Bryant; Rob Sharp; G. N. Cecil; L. M. R. Fogarty; Caroline Foster; Andrew W. Green; I-Ting Ho; Matt S. Owers; Adam L. Schaefer; Nicholas Scott; Amanda E. Bauer; Ivan K. Baldry; L. A. Barnes; Joss Bland-Hawthorn; J. V. Bloom; Sarah Brough; Matthew Colless; Luca Cortese; Warrick J. Couch; Michael J. Drinkwater; Simon P. Driver; Michael Goodwin; M. L. P. Gunawardhana; Elise Hampton; Andrew M. Hopkins; Lisa J. Kewley; Jon Lawrence

We present the Early Data Release of the Sydney–AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of _3400 low-redshift (z < 0:12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated datacubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All datacubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated datacubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9–1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0:0009, less than a fifth of a spaxel.


Monthly Notices of the Royal Astronomical Society | 2013

Galaxy And Mass Assembly: evolution of the Hα luminosity function and star formation rate density up to z < 0.35

M. L. P. Gunawardhana; Andrew M. Hopkins; Joss Bland-Hawthorn; Sarah Brough; Rob Sharp; Jon Loveday; Edward N. Taylor; D. H. Jones; M. A. Lara-Lopez; Amanda E. Bauer; Matthew Colless; Matt S. Owers; Ivan K. Baldry; A. R. Lopez-Sanchez; Caroline Foster; Steven P. Bamford; Michael J. I. Brown; Simon P. Driver; Michael J. Drinkwater; J. Liske; Martin Meyer; Peder Norberg; Aaron S. G. Robotham; J. H. Y. Ching; Michelle E. Cluver; Scott M. Croom; Lee S. Kelvin; M. Prescott; Oliver Steele; Daniel Thomas

Measurements of the low-z H alpha luminosity function, Phi, have a large dispersion in the local number density of sources (similar to 0.5-1 Mpc(-3) dex(-1)), and correspondingly in the star formation rate density (SFRD). The possible causes for these discrepancies include limited volume sampling, biases arising from survey sample selection, different methods of correcting for dust obscuration and active galactic nucleus contamination. The Galaxy And Mass Assembly (GAMA) survey and Sloan Digital Sky Survey (SDSS) provide deep spectroscopic observations over a wide sky area enabling detection of a large sample of star-forming galaxies spanning 0.001 < SFRH alpha (M-circle dot yr(- 1)) < 100 with which to robustly measure the evolution of the SFRD in the low-z Universe. The large number of high-SFR galaxies present in our sample allow an improved measurement of the bright end of the luminosity function, indicating that the decrease in Phi at bright luminosities is best described by a Saunders functional form rather than the traditional Schechter function. This result is consistent with other published luminosity functions in the far-infrared and radio. For GAMA and SDSS, we find the r-band apparent magnitude limit, combined with the subsequent requirement for H alpha detection leads to an incompleteness due to missing bright H alpha sources with faint r-band magnitudes.


Monthly Notices of the Royal Astronomical Society | 2014

Galaxy and mass assembly (GAMA) : AUTOZ spectral redshift measurements, confidence and errors

Ivan K. Baldry; Mehmet Alpaslan; Amanda E. Bauer; Joss Bland-Hawthorn; Sarah Brough; Michelle E. Cluver; Scott M. Croom; Luke J. M. Davies; Simon P. Driver; M. L. P. Gunawardhana; Benne W. Holwerda; Andrew M. Hopkins; Lee S. Kelvin; J. Liske; A. R. Lopez-Sanchez; Jon Loveday; Peder Norberg; J. A. Peacock; Aaron S. G. Robotham; Edward N. Taylor

The Galaxy And Mass Assembly (GAMA) survey has obtained spectra of over 230 000 targets using the Anglo-Australian Telescope. To homogenize the redshift measurements and improve the reliability, a fully automatic redshift code was developed (AUTOZ). The measurements were made using a cross-correlation method for both the absorption- and the emission-line spectra. Large deviations in the high-pass-filtered spectra are partially clipped in order to be robust against uncorrected artefacts and to reduce the weight given to single-line matches. A single figure of merit (FOM) was developed that puts all template matches on to a similar confidence scale. The redshift confidence as a function of the FOM was fitted with a tanh function using a maximum likelihood method applied to repeat observations of targets. The method could be adapted to provide robust automatic redshifts for other large galaxy redshift surveys. For the GAMA survey, there was a substantial improvement in the reliability of assigned redshifts and in the lowering of redshift uncertainties with a median velocity uncertainty of 33kms −1 .

Collaboration


Dive into the Aaron S. G. Robotham's collaboration.

Top Co-Authors

Avatar

Simon P. Driver

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Hopkins

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Ivan K. Baldry

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Sarah Brough

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee S. Kelvin

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke J. M. Davies

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge