Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron W. Miller is active.

Publication


Featured researches published by Aaron W. Miller.


Environmental Microbiology | 2014

Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota

Kevin D. Kohl; Aaron W. Miller; James Marvin; Roderick I. Mackie; M. Denise Dearing

Symbiotic gut microbes have facilitated the success of herbivorous mammals, which are generally grouped into foregut- and hindgut-fermenters. However, rodents are primarily herbivorous and exhibit a variety of gastrointestinal anatomies. Most rodents house microbes in hindgut chambers, such as the caecum and colon. Some rodents also exhibit stomach segmentation with a foregut chamber proximal to the stomach. For over a century, scientists have hypothesized that this foregut chamber houses a microbial community, yet this has never been explicitly examined. We investigated the capacity of each of the gut regions to house microbes by measuring size, pH, bacterial cell density, concentrations of microbial metabolites and digesta transit time in woodrats (Neotoma spp.). We also compared microbial communities across gut chambers, as well as faeces, using 16S rRNA sequencing. This allowed us to test the appropriateness of using faeces as a proxy for microbial communities of other gut chambers. We found that woodrats house foregut microbial communities with similar density and volatile fatty acid concentrations to rumen ecosystems. Resident microbial communities varied between gut chambers, and faecal bacterial communities were significantly different from caecal and colonic communities. The foregut microbiota may provide a number of physiological services to the host.


Applied and Environmental Microbiology | 2014

The Gastrointestinal Tract of the White-Throated Woodrat (Neotoma albigula) Harbors Distinct Consortia of Oxalate-Degrading Bacteria

Aaron W. Miller; Kevin D. Kohl; M. Denise Dearing

ABSTRACT The microbiota inhabiting the mammalian gut is a functional organ that provides a number of services for the host. One factor that may regulate the composition and function of gut microbial communities is dietary toxins. Oxalate is a toxic plant secondary compound (PSC) produced in all major taxa of vascular plants and is consumed by a variety of animals. The mammalian herbivore Neotoma albigula is capable of consuming and degrading large quantities of dietary oxalate. We isolated and characterized oxalate-degrading bacteria from the gut contents of wild-caught animals and used high-throughput sequencing to determine the distribution of potential oxalate-degrading taxa along the gastrointestinal tract. Isolates spanned three genera: Lactobacillus, Clostridium, and Enterococcus. Over half of the isolates exhibited significant oxalate degradation in vitro, and all Lactobacillus isolates contained the oxc gene, one of the genes responsible for oxalate degradation. Although diverse potential oxalate-degrading genera were distributed throughout the gastrointestinal tract, they were most concentrated in the foregut, where dietary oxalate first enters the gastrointestinal tract. We hypothesize that unique environmental conditions present in each gut region provide diverse niches that select for particular functional taxa and communities.


Pathogenetics | 2013

The Metabolic and Ecological Interactions of Oxalate-Degrading Bacteria in the Mammalian Gut

Aaron W. Miller; Denise Dearing

Oxalate-degrading bacteria comprise a functional group of microorganisms, commonly found in the gastrointestinal tract of mammals. Oxalate is a plant secondary compound (PSC) widely produced by all major taxa of plants and as a terminal metabolite by the mammalian liver. As a toxin, oxalate can have a significant impact on the health of mammals, including humans. Mammals do not have the enzymes required to metabolize oxalate and rely on their gut microbiota for this function. Thus, significant metabolic interactions between the mammalian host and a complex gut microbiota maintain the balance of oxalate in the body. Over a dozen species of gut bacteria are now known to degrade oxalate. This review focuses on the host-microbe and microbe-microbe interactions that regulate the degradation of oxalate by the gut microbiota. We discuss the pathways of oxalate throughout the body and the mammalian gut as a series of differentiated ecosystems that facilitate oxalate degradation. We also explore the mechanisms and functions of microbial oxalate degradation along with the implications for the ecological and evolutionary interactions within the microbiota and for mammalian hosts. Throughout, we consider questions that remain, as well as recent technological advances that can be employed to answer them.


Journal of Neuropathology and Experimental Neurology | 1979

Pathogenesis of Visna. IV. Spinal Fluid Studies

Neal Nathanson; Gudmundur Pétursson; Gudmundur Georgsson; Páll A. Pálsson; John R. Martin; Aaron W. Miller

Visna is a persistent retrovirus infection of sheep which produces a chronic progressive paralytic disease after an incubation period lasting from months to years. The cerebrospinal fluid (CSF) was repeatedly sampled in a group of Icelandic sheep which were infected intracerebrally and followed up to 42 months. Minimal levels of infectious virus were isolated from the cerebrospinal fluid (CSF) up to 4 months after infection after which CSF neutralizing antibodies appeared in many sheep. These antibodies varied in titer and in some animals exceeded serum antibody levels which were moderate to high. CSF antibody is apparently produced within the CNS by local proliferation of B cell clones, and is accompanied by the appearance of considerable numbers of plasma cells in the neural parenchyma. Some sheep raised serum antibody to a second serotype of visna virus and in a number of these animals heterotypic antibody was also found in the CSF. An increase in CSF leukocytes often occurs within 1 to 3 months following infection and may then persist or wane. A persistent high level of CSF cells is an indicator of progressive CNS disease and such animals are more likely to yield virus, have higher CSF antibody levels, more severe CNS lesions, and an enhanced risk of clinical illness (progressive paralysis). CSF cells are predominantly macrophages and lymphocytes, with a consistent minority of plasma cells.


Journal of Experimental Medicine | 2017

LRRK2 promotes the activation of NLRC4 inflammasome during Salmonella Typhimurium infection

Weiwei Liu; Xia’nan Liu; Yu Li; Junjie Zhao; Zhenshan Liu; Zhuqin Hu; Ying Wang; Yufeng Yao; Aaron W. Miller; Bing Su; Mark R. Cookson; Xiaoxia Li; Zizhen Kang

Although genetic polymorphisms in the LRRK2 gene are associated with a variety of diseases, the physiological function of LRRK2 remains poorly understood. In this study, we report a crucial role for LRRK2 in the activation of the NLRC4 inflammasome during host defense against Salmonella enteric serovar Typhimurium infection. LRRK2 deficiency reduced caspase-1 activation and IL-1&bgr; secretion in response to NLRC4 inflammasome activators in macrophages. Lrrk2−/− mice exhibited impaired clearance of pathogens after acute S. Typhimurium infection. Mechanistically, LRRK2 formed a complex with NLRC4 in the macrophages, and the formation of the LRRK2–NLRC4 complex led to the phosphorylation of NLRC4 at Ser533. Importantly, the kinase activity of LRRK2 is required for optimal NLRC4 inflammasome activation. Collectively, our study reveals an important role for LRRK2 in the host defense by promoting NLRC4 inflammasome activation.


Applied and Environmental Microbiology | 2016

Effect of Dietary Oxalate on the Gut Microbiota of the Mammalian Herbivore Neotoma albigula.

Aaron W. Miller; Kelly F. Oakeson; Colin Dale; M. Denise Dearing

ABSTRACT Diet is one of the primary drivers that sculpts the form and function of the mammalian gut microbiota. However, the enormous taxonomic and metabolic diversity held within the gut microbiota makes it difficult to isolate specific diet-microbe interactions. The objective of the current study was to elucidate interactions between the gut microbiota of the mammalian herbivore Neotoma albigula and dietary oxalate, a plant secondary compound (PSC) degraded exclusively by the gut microbiota. We quantified oxalate degradation in N. albigula fed increasing amounts of oxalate over time and tracked the response of the fecal microbiota using high-throughput sequencing. The amount of oxalate degraded in vivo was linearly correlated with the amount of oxalate consumed. The addition of dietary oxalate was found to impact microbial species diversity by increasing the representation of certain taxa, some of which are known to be capable of degrading oxalate (e.g., Oxalobacter spp.). Furthermore, the relative abundances of 117 operational taxonomic units (OTU) exhibited a significant correlation with oxalate consumption. The results of this study indicate that dietary oxalate induces complex interactions within the gut microbiota that include an increase in the relative abundance of a community of bacteria that may contribute either directly or indirectly to oxalate degradation in mammalian herbivores.


mSystems | 2017

The Induction of Oxalate Metabolism In Vivo Is More Effective with Functional Microbial Communities than with Functional Microbial Species

Aaron W. Miller; Colin Dale; M. Denise Dearing

Oxalate is a central component in 80% of kidney stones. While mammals do not possess the enzymes to degrade oxalate, many gastrointestinal bacteria are efficient oxalate degraders. We examined the role of cohesive microbial networks for oxalate metabolism, using Sprague-Dawley rats as a model host. While the transplantation of oxalate-degrading bacteria alone to the Sprague-Dawley hosts did increase oxalate metabolism, fecal transplants from a wild mammalian herbivore, Neotoma albigula, had a significantly greater effect. Furthermore, the boost for oxalate metabolism persisted only in animals that received fecal transplants. Animals receiving fecal transplants had a more diverse and cohesive network of bacteria associated with the Oxalobacteraceae, a family known to consist of specialist oxalate-degrading bacteria, than did animals that received oxalate-degrading bacteria alone. Our results indicate that fecal transplants are more effective at transferring specific functions than are microbial specialists alone, which has broad implications for the development of bacteriotherapies. ABSTRACT For mammals, oxalate enters the body through the diet or is endogenously produced by the liver; it is removed by microbial oxalate metabolism in the gut and/or excretion in feces or urine. Deficiencies in any one of the these pathways can lead to complications, such as calcium oxalate urinary stones. While considerable research has been conducted on individual oxalate-degrading bacterial isolates, interactions between oxalate and the gut microbiota as a whole are unknown. We examined the reduction in oxalate excretion in a rat model following oral administration of fecal microbes from a mammalian herbivore adapted to a high oxalate diet or to fecal transplants consisting of two different formulations of mixed oxalate-degrading isolates. While all transplants elicited a significant reduction in oxalate excretion initially, the greatest effect was seen with fecal microbial transplants, which persisted even in the absence of dietary oxalate. The reduction in oxalate excretion in animals given fecal transplants corresponded with the establishment of diverse bacteria, including known oxalate-degrading bacteria and a cohesive network of bacteria centered on oxalate-degrading specialists from the Oxalobacteraceae family. Results suggested that the administration of a complete community of bacteria facilitates a cohesive balance in terms of microbial interactions. Our work offers important insights into the development of targeted bacteriotherapies intended to reduce urinary oxalate excretion in patients at risk for recurrent calcium oxalate stones as well as bacteriotherapies targeting other toxins for elimination. IMPORTANCE Oxalate is a central component in 80% of kidney stones. While mammals do not possess the enzymes to degrade oxalate, many gastrointestinal bacteria are efficient oxalate degraders. We examined the role of cohesive microbial networks for oxalate metabolism, using Sprague-Dawley rats as a model host. While the transplantation of oxalate-degrading bacteria alone to the Sprague-Dawley hosts did increase oxalate metabolism, fecal transplants from a wild mammalian herbivore, Neotoma albigula, had a significantly greater effect. Furthermore, the boost for oxalate metabolism persisted only in animals that received fecal transplants. Animals receiving fecal transplants had a more diverse and cohesive network of bacteria associated with the Oxalobacteraceae, a family known to consist of specialist oxalate-degrading bacteria, than did animals that received oxalate-degrading bacteria alone. Our results indicate that fecal transplants are more effective at transferring specific functions than are microbial specialists alone, which has broad implications for the development of bacteriotherapies.


mSphere | 2017

Microbiota Diversification and Crash Induced by Dietary Oxalate in the Mammalian Herbivore Neotoma albigula

Aaron W. Miller; Colin Dale; M. Denise Dearing

The bacteria associated with mammalian hosts exhibit extensive interactions with overall host physiology and contribute significantly to the health of the host. Bacteria are vital to the mitigation of the toxic effects of oxalate specifically as mammals do not possess the enzymes to degrade this compound, which is present in the majority of kidney stones. Contrary to the body of literature on a few oxalate-degrading specialists, our work illustrates that oxalate stimulates a broad but cohesive microbial network in a dose-dependent manner. The unique characteristics of the N. albigula microbiota make it an excellent source for the development of bacteriotherapies to inhibit kidney stone formation. Furthermore, this work successfully demonstrates methods to identify microbial networks responsive to specific toxins, their limits, and important elements such as microbial network cohesivity and architecture. These are necessary steps in the development of targeted bacteriotherapies. ABSTRACT Oxalate, broadly found in both dietary and endogenous sources, is a primary constituent in 80% of kidney stones, an affliction that has tripled in prevalence over the last 40 years. Oxalate-degrading bacteria within the gut microbiota can mitigate the effects of oxalate and are negatively correlated with kidney stone formation, but bacteriotherapies involving oxalate-degrading bacteria have met with mixed results. To inform the development of more effective and consistent bacteriotherapies, we sought to quantify the interactions and limits between oxalate and an oxalate-adapted microbiota from the wild mammalian herbivore Neotoma albigula (woodrat), which consumes a high-oxalate diet in the wild. We tracked the microbiota over a variable-oxalate diet ranging from 0.2% to 12%, with the upper limit approximating 10× the level of human consumption. The N. albigula microbiota was capable of degrading ~100% of dietary oxalate regardless of the amount consumed. However, the microbiota exhibited significant changes in diversity dynamically at the operational taxonomic unit (OTU), family, and community levels in accordance with oxalate input. Furthermore, a cohesive microbial network was stimulated by the consumption of oxalate and exhibited some resistance to the effects of prolonged exposure. This study demonstrates that the oxalate-adapted microbiota of N. albigula exhibits a very high level of degradation and tolerance for oxalate. IMPORTANCE The bacteria associated with mammalian hosts exhibit extensive interactions with overall host physiology and contribute significantly to the health of the host. Bacteria are vital to the mitigation of the toxic effects of oxalate specifically as mammals do not possess the enzymes to degrade this compound, which is present in the majority of kidney stones. Contrary to the body of literature on a few oxalate-degrading specialists, our work illustrates that oxalate stimulates a broad but cohesive microbial network in a dose-dependent manner. The unique characteristics of the N. albigula microbiota make it an excellent source for the development of bacteriotherapies to inhibit kidney stone formation. Furthermore, this work successfully demonstrates methods to identify microbial networks responsive to specific toxins, their limits, and important elements such as microbial network cohesivity and architecture. These are necessary steps in the development of targeted bacteriotherapies.


The ISME Journal | 2017

Modeling time-series data from microbial communities

Benjamin J. Ridenhour; Sarah L Brooker; Janet E. Williams; James T. Van Leuven; Aaron W. Miller; M. Denise Dearing; Christopher H. Remien

As sequencing technologies have advanced, the amount of information regarding the composition of bacterial communities from various environments (for example, skin or soil) has grown exponentially. To date, most work has focused on cataloging taxa present in samples and determining whether the distribution of taxa shifts with exogenous covariates. However, important questions regarding how taxa interact with each other and their environment remain open thus preventing in-depth ecological understanding of microbiomes. Time-series data from 16S rDNA amplicon sequencing are becoming more common within microbial ecology, but methods to infer ecological interactions from these longitudinal data are limited. We address this gap by presenting a method of analysis using Poisson regression fit with an elastic-net penalty that (1) takes advantage of the fact that the data are time series; (2) constrains estimates to allow for the possibility of many more interactions than data; and (3) is scalable enough to handle data consisting of thousands of taxa. We test the method on gut microbiome data from white-throated woodrats (Neotoma albigula) that were fed varying amounts of the plant secondary compound oxalate over a period of 22 days to estimate interactions between OTUs and their environment.


Genome Announcements | 2016

Draft Genome Sequence of an Oxalate-Degrading Strain of Clostridium sporogenes from the Gastrointestinal Tract of the White-Throated Woodrat (Neotoma albigula).

Kelly F. Oakeson; Aaron W. Miller; Colin Dale; Denise Dearing

ABSTRACT The gastrointestinal tract of the white-throated woodrat Neotoma albigula harbors a diverse microbial population that functions in the degradation of ingested plant secondary compounds. Here, we present the draft genome sequence and annotation of Clostridium sporogenes strain 8-O, a novel oxalate-degrading bacterium isolated from the feces of N. albigula.

Collaboration


Dive into the Aaron W. Miller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin D. Kohl

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurie L. Richardson

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge