Kelly F. Oakeson
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelly F. Oakeson.
Genome Biology and Evolution | 2014
Kelly F. Oakeson; Rosario Gil; Adam L. Clayton; Diane M. Dunn; Andrew von Niederhausern; Cindy Hamil; Alex Aoyagi; Brett Duval; Amanda Baca; Francisco J. Silva; Agnès Vallier; D. Grant Jackson; Amparo Latorre; Robert B. Weiss; Abdelaziz Heddi; Andrés Moya; Colin Dale
Symbiotic associations between animals and microbes are ubiquitous in nature, with an estimated 15% of all insect species harboring intracellular bacterial symbionts. Most bacterial symbionts share many genomic features including small genomes, nucleotide composition bias, high coding density, and a paucity of mobile DNA, consistent with long-term host association. In this study, we focus on the early stages of genome degeneration in a recently derived insect-bacterial mutualistic intracellular association. We present the complete genome sequence and annotation of Sitophilus oryzae primary endosymbiont (SOPE). We also present the finished genome sequence and annotation of strain HS, a close free-living relative of SOPE and other insect symbionts of the Sodalis-allied clade, whose gene inventory is expected to closely resemble the putative ancestor of this group. Structural, functional, and evolutionary analyses indicate that SOPE has undergone extensive adaptation toward an insect-associated lifestyle in a very short time period. The genome of SOPE is large in size when compared with many ancient bacterial symbionts; however, almost half of the protein-coding genes in SOPE are pseudogenes. There is also evidence for relaxed selection on the remaining intact protein-coding genes. Comparative analyses of the whole-genome sequence of strain HS and SOPE highlight numerous genomic rearrangements, duplications, and deletions facilitated by a recent expansion of insertions sequence elements, some of which appear to have catalyzed adaptive changes. Functional metabolic predictions suggest that SOPE has lost the ability to synthesize several essential amino acids and vitamins. Analyses of the bacterial cell envelope and genes encoding secretion systems suggest that these structures and elements have become simplified in the transition to a mutualistic association.
PLOS Genetics | 2012
Adam L. Clayton; Kelly F. Oakeson; Maria Gutin; Arthur Pontes; Diane M. Dunn; Andrew von Niederhausern; Robert B. Weiss; Mark A. Fisher; Colin Dale
Despite extensive study, little is known about the origins of the mutualistic bacterial endosymbionts that inhabit approximately 10% of the worlds insects. In this study, we characterized a novel opportunistic human pathogen, designated “strain HS,” and found that it is a close relative of the insect endosymbiont Sodalis glossinidius. Our results indicate that ancestral relatives of strain HS have served as progenitors for the independent descent of Sodalis-allied endosymbionts found in several insect hosts. Comparative analyses indicate that the gene inventories of the insect endosymbionts were independently derived from a common ancestral template through a combination of irreversible degenerative changes. Our results provide compelling support for the notion that mutualists evolve from pathogenic progenitors. They also elucidate the role of degenerative evolutionary processes in shaping the gene inventories of symbiotic bacteria at a very early stage in these mutualistic associations.
PLOS ONE | 2008
Mauricio Pontes; Markus Babst; Robert B. Lochhead; Kelly F. Oakeson; Kari Smith; Colin Dale
Background Sodalis glossinidius, a maternally transmitted bacterial endosymbiont of tsetse flies (Glossina spp.), uses an acylated homoserine lactone (AHL)-based quorum sensing system to modulate gene expression in accordance with bacterial cell density. The S. glossinidius quorum sensing system relies on the function of two regulatory proteins; SogI (a LuxI homolog) synthesizes a signaling molecule, characterized as N-(3-oxohexanoyl) homoserine lactone (OHHL), and SogR1 (a LuxR homolog) interacts with OHHL to modulate transcription of specific target genes. Methodology/Principal Findings We used a tiling microarray to analyze the S. glossinidius transcriptome in the presence and absence of exogenous OHHL. The major finding is that OHHL increases transcription of a large number of genes that are known to be involved in the oxidative stress response. We also show that the obligate symbiont of the rice weevil, Sitophilus oryzae (SOPE), maintains copies of the quorum sensing regulatory genes that are found in S. glossinidius. Molecular evolutionary analyses indicate that these sequences are evolving under stabilizing selection, consistent with the maintenance of their functions in the SOPE symbiosis. Finally, the expression studies in S. glossinidius also reveal that quorum sensing regulates the expression of a cryptic, degenerate gene (carA) that arose from an ancient deletion in the last common ancestor of S. glossinidius and SOPE. Conclusions/Significance This oxidative stress response is likely mandated under conditions of dense intracellular symbiont infection, when intense metabolic activity is expected to generate a heavy oxidative burden. Such conditions are known to arise in the bacteriocytes of grain weevils, which harbor dense intracellular infections of symbiotic bacteria that are closely related to S. glossinidius. The presence of a degenerate carA sequence in S. glossinidius and SOPE indicates the potential for neofunctionalization to occur during the process of genome degeneration.
BMC Evolutionary Biology | 2013
Wendy A. Smith; Kelly F. Oakeson; Kevin P. Johnson; David L. Reed; Tamar E. Carter; Kari Smith; Ryuichi Koga; Takema Fukatsu; Dale H. Clayton; Colin Dale
BackgroundMany groups of insects have obligate bacterial symbionts that are vertically transmitted. Such associations are typically characterized by the presence of a monophyletic group of bacteria living in a well-defined host clade. In addition the phylogeny of the symbiotic bacteria is typically congruent with that of the host, signifying co-speciation. Here we show that bacteria living in a single genus of feather lice, Columbicola (Insecta: Phthiraptera), present an exception to this typical pattern.ResultsThe phylogeny of Columbicola spp. symbionts revealed the presence of three candidate clades, with the most species-rich clade having a comb-like topology with very short internodes and long terminal branches. Evolutionary simulations indicate that this topology is characteristic of a process of repeated symbiont replacement over a brief time period. The two remaining candidate clades in our study exhibit high levels of nucleotide substitution, suggesting accelerated molecular evolution due to relaxed purifying selection or smaller effective population size, which is typical of many vertically transmitted insect symbionts. Representatives of the fast-evolving and slow-evolving symbiont lineages exhibit the same localization, migration, and transmission patterns in their hosts, implying direct replacement.ConclusionsOur findings suggest that repeated, independent symbiont replacements have taken place over the course of the relatively recent radiation of Columbicola spp. These results are compatible with the notion that lice and other insects have the capability to acquire novel symbionts through the domestication of progenitor strains residing in their local environment.
Applied and Environmental Microbiology | 2016
Aaron W. Miller; Kelly F. Oakeson; Colin Dale; M. Denise Dearing
ABSTRACT Diet is one of the primary drivers that sculpts the form and function of the mammalian gut microbiota. However, the enormous taxonomic and metabolic diversity held within the gut microbiota makes it difficult to isolate specific diet-microbe interactions. The objective of the current study was to elucidate interactions between the gut microbiota of the mammalian herbivore Neotoma albigula and dietary oxalate, a plant secondary compound (PSC) degraded exclusively by the gut microbiota. We quantified oxalate degradation in N. albigula fed increasing amounts of oxalate over time and tracked the response of the fecal microbiota using high-throughput sequencing. The amount of oxalate degraded in vivo was linearly correlated with the amount of oxalate consumed. The addition of dietary oxalate was found to impact microbial species diversity by increasing the representation of certain taxa, some of which are known to be capable of degrading oxalate (e.g., Oxalobacter spp.). Furthermore, the relative abundances of 117 operational taxonomic units (OTU) exhibited a significant correlation with oxalate consumption. The results of this study indicate that dietary oxalate induces complex interactions within the gut microbiota that include an increase in the relative abundance of a community of bacteria that may contribute either directly or indirectly to oxalate degradation in mammalian herbivores.
International Journal of Systematic and Evolutionary Microbiology | 2015
Abhishek Chari; Kelly F. Oakeson; Shinichiro Enomoto; D. Grant Jackson; Mark A. Fisher; Colin Dale
A Gram-stain-negative bacterium, isolated from a human wound was previously found to share an unprecedentedly close relationship with Sodalis glossinidius and other members of the Sodalis-allied clade of insect symbionts. This relationship was inferred from sequence analysis of the 16S rRNA gene and genomic comparisons and suggested the strain belonged to a novel species. Biochemical and genetic analyses supported this suggestion and demonstrated that the organism has a wide repertoire of metabolic properties, which is consistent with the presence of a relatively large gene inventory. Among members of the Sodalis-allied clade, this is the first representative that has sufficient metabolic capabilities to sustain growth in minimal media. On the basis of the results of this study, we propose that this organism be classified as a representative of a novel species, Sodalis praecaptivus sp. nov. (type strain HS(T) = DSM 27494(T) = ATCC BAA-2554(T)).
Genomics data | 2016
Michael S. Campbell; Kelly F. Oakeson; Mark Yandell; James R. Halpert; Denise Dearing
We present the de novo draft genome sequence for a vertebrate mammalian herbivore, the desert woodrat (Neotoma lepida). This species is of ecological and evolutionary interest with respect to ingestion, microbial detoxification and hepatic metabolism of toxic plant secondary compounds from the highly toxic creosote bush (Larrea tridentata) and the juniper shrub (Juniperus monosperma). The draft genome sequence and annotation have been deposited at GenBank under the accession LZPO01000000.
Genome Announcements | 2016
Kelly F. Oakeson; Aaron W. Miller; Colin Dale; Denise Dearing
ABSTRACT The gastrointestinal tract of the white-throated woodrat Neotoma albigula harbors a diverse microbial population that functions in the degradation of ingested plant secondary compounds. Here, we present the draft genome sequence and annotation of Clostridium sporogenes strain 8-O, a novel oxalate-degrading bacterium isolated from the feces of N. albigula.
bioRxiv | 2018
Kevin D. Kohl; Kelly F. Oakeson; Teri J. Orr; Aaron W. Miller; Jennifer S. Forbey; Caleb D. Phillips; Colin Dale; Robert B. Weiss; M. Denise Dearing
Microbial detoxification of plant defense compounds influences the use of certain plants as food sources by herbivores. The location of microbial detoxification along the gut could have profound influences on the distribution, metabolism, and tolerance to toxic compounds. Stephen’s woodrats (Neotoma stephensi) specialize on juniper, which is heavily defended by numerous defensive compounds, such as oxalate, phenolics, and monoterpenes. Woodrats maintain two gut chambers harboring dense microbial communities: a foregut chamber proximal to the major site of toxin absorption, and a cecal chamber in their hindgut. We performed several experiments to investigate the location of microbial detoxification in the woodrat gut. First, we measured levels of toxins across gut chambers. Compared to food material, oxalate concentrations were immediately lower in the foregut chamber, while concentrations of terpenes remain high in the foregut, and are lowest in the cecal chamber. We also conducted metagenomic sequencing of the foregut and cecal chambers to compare microbial functions. We found that the majority of genes associated with detoxification functions were more abundant in the cecal chamber. However, some genes associated with degradation of oxalate and phenolic compounds were more abundant in the foregut. Thus, it seems that microbial detoxification may take place in various chambers depending on the class of chemical compound. We hypothesize that the location of microbial detoxification could impact the tolerance of animals to these compounds, which may have ecological and evolutionary consequences.
FEMS Microbiology Ecology | 2018
Kevin D. Kohl; Kelly F. Oakeson; Teri J. Orr; Aaron W. Miller; Jennifer S. Forbey; Caleb D. Phillips; Colin Dale; Robert B. Weiss; M. Denise Dearing
Microbial detoxification of plant toxins influences the use of plants as food sources by herbivores. Stephens woodrats (Neotoma stephensi) specialize on juniper, which is defended by oxalate, phenolics and monoterpenes, while closely related N. albigula specialize on cactus, which only contains oxalate. Woodrats maintain two gut chambers harboring dense microbial communities: a foregut chamber proximal to the major site of toxin absorption, and a cecal chamber in their hindgut. We performed several experiments to investigate the location and nature of microbial detoxification in the woodrat gut. First, we measured toxin concentrations across gut chambers of N. stephensi. Compared to food material, oxalate concentrations were immediately lower in the foregut, while concentrations of terpenes remained high in the foregut, and were lowest in the cecal chamber. We conducted metagenomic sequencing of the foregut chambers of both woodrat species and cecal chambers of N. stephensi to compare microbial functions. We found that most genes associated with detoxification were more abundant in the cecal chambers of N. stephensi. However, some genes associated with degradation of oxalate and phenolic compounds were more abundant in the foregut chambers. Thus, microbial detoxification may take place in various chambers depending on the class of chemical compound.