Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron Williams is active.

Publication


Featured researches published by Aaron Williams.


Posted with permission. Presented at the Powertrain and Fluid Systems Conference and Exhibition, October 2006, Toronto, Canada; Related Information: SAE Paper No. 2006-01-3280 | 2006

Effect of Biodiesel Blends on Diesel Particulate Filter Performance

Aaron Williams; Robert L. McCormick; R. Robert Hayes; John Ireland; Howard L. Fang

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.


Environmental Science & Technology | 2010

Diesel particle filter and fuel effects on heavy-duty diesel engine emissions.

Matthew A. Ratcliff; A. John Dane; Aaron Williams; John Ireland; Jon Luecke; Robert L. McCormick; Kent J. Voorhees

The impacts of biodiesel and a continuously regenerated (catalyzed) diesel particle filter (DPF) on the emissions of volatile unburned hydrocarbons, carbonyls, and particle associated polycyclic aromatic hydrocarbons (PAH) and nitro-PAH, were investigated. Experiments were conducted on a 5.9 L Cummins ISB, heavy-duty diesel engine using certification ultra-low-sulfur diesel (ULSD, S ≤ 15 ppm), soy biodiesel (B100), and a 20% blend thereof (B20). Against the ULSD baseline, B20 and B100 reduced engine-out emissions of measured unburned volatile hydrocarbons and PM associated PAH and nitro-PAH by significant percentages (40% or more for B20 and higher percentage for B100). However, emissions of benzene were unaffected by the presence of biodiesel and emissions of naphthalene actually increased for B100. This suggests that the unsaturated FAME in soy-biodiesel can react to form aromatic rings in the diesel combustion environment. Methyl acrylate and methyl 3-butanoate were observed as significant species in the exhaust for B20 and B100 and may serve as markers of the presence of biodiesel in the fuel. The DPF was highly effective at converting gaseous hydrocarbons and PM associated PAH and total nitro-PAH. However, conversion of 1-nitropyrene by the DPF was less than 50% for all fuels. Blending of biodiesel caused a slight reduction in engine-out emissions of acrolein, but otherwise had little effect on carbonyl emissions. The DPF was highly effective for conversion of carbonyls, with the exception of formaldehyde. Formaldehyde emissions were increased by the DPF for ULSD and B20.


Biodegradation | 2005

Inhibition of bacterial perchlorate reduction by zero-valent iron

Joshua D. Shrout; Aaron Williams; Michelle M. Scherer; Gene F. Parkin

Perchlorate was reduced by a mixed bacterial culture over a pH range of 7.0–8.9. Similar rates of perchlorate reduction were observed between pH 7.0 and 8.5, whereas significantly slower reduction occurred at pH 8.9. Addition of iron metal, Fe(0), to the mixed bacterial culture resulted in slower rates of perchlorate reduction. Negligible perchlorate reduction was observed under abiotic conditions with Fe(0) alone in a reduced anaerobic medium. The inhibition of perchlorate reduction observed in the presence of Fe(0) is in contrast to previous studies that have shown faster rates of contaminant reduction when bacteria and Fe(0) were combined compared to bacteria alone. The addition of Fe(0) resulted in a rise in pH, as well as precipitation of Fe minerals that appeared to encapsulate the bacterial cells. In experiments where pH was kept constant, the addition of Fe(0) still resulted in slower rates of perchlorate reduction suggesting that encapsulation of bacteria by Fe precipitates contributed to the inhibition of the bacterial activity independent of the effect of pH on bacteria. These results provide the first evidence linking accumulation of iron precipitates at the cell surface to inhibition of environmental contaminant degradation. Fe(0) was not a suitable amendment to stimulate perchlorate-degrading bacteria and the bacterial inhibition caused by precipitation of reduced Fe species may be important in other combined anaerobic bacterial–Fe(0) systems. Furthermore, the inhibition of bacterial activity by iron precipitation may have significant implications for the design of in situ bioremediation technologies for treatment of perchlorate plumes.


Environmental Science & Technology | 2013

Impact of Higher Alcohols Blended in Gasoline on Light-Duty Vehicle Exhaust Emissions

Matthew A. Ratcliff; Jon Luecke; Aaron Williams; Earl Christensen; Janet Yanowitz; Aaron Reek; Robert L. McCormick

Certification gasoline was splash blended with alcohols to produce four blends: ethanol (16 vol%), n-butanol (17 vol%), i-butanol (21 vol%), and an i-butanol (12 vol%)/ethanol (7 vol%) mixture; these fuels were tested in a 2009 Honda Odyssey (a Tier 2 Bin 5 vehicle) over triplicate LA92 cycles. Emissions of oxides of nitrogen, carbon monoxide, non-methane organic gases (NMOG), unburned alcohols, carbonyls, and C1-C8 hydrocarbons (particularly 1,3-butadiene and benzene) were determined. Large, statistically significant fuel effects on regulated emissions were a 29% reduction in CO from E16 and a 60% increase in formaldehyde emissions from i-butanol, compared to certification gasoline. Ethanol produced the highest unburned alcohol emissions of 1.38 mg/mile ethanol, while butanols produced much lower unburned alcohol emissions (0.17 mg/mile n-butanol, and 0.30 mg/mile i-butanol); these reductions were offset by higher emissions of carbonyls. Formaldehyde, acetaldehyde, and butyraldehyde were the most significant carbonyls from the n-butanol blend, while formaldehyde, acetone, and 2-methylpropanal were the most significant from the i-butanol blend. The 12% i-butanol/7% ethanol blend was designed to produce no increase in gasoline vapor pressure. This fuels exhaust emissions contained the lowest total oxygenates among the alcohol blends and the lowest NMOG of all fuels tested.


Archive | 2006

Effects of Biodiesel Blends on Vehicle Emissions: Fiscal Year 2006 Annual Operating Plan Milestone 10.4

Robert L. McCormick; Aaron Williams; J. Ireland; R. Robert Hayes

The objective was to determine if testing entire vehicles, vs. just the engines, on a heavy-duty chassis dynamometer provides a better, measurement of the impact of B20 on emissions.


SAE International Journal of Fuels and Lubricants | 2012

Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

Michael Lammert; Robert L. McCormick; Petr Sindler; Aaron Williams

This research project compares the emissions of oxides of nitrogen (NOx) from transit buses on as many as five different fuels and three standard transit duty cycles. The objective of the project is to establish if there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Prior studies have shown that biodiesel, sometimes called B20, can cause a small but significant increase in NOx emissions for some engines and duty cycles. Six buses that span engine build years from 1998 to 2011 were tested on the National Renewable Energy Laboratorys (NREL) Renewable Fuels and Lubricants (ReFUEL) research laboratorys heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic California Air Resources Board (CARB) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and the Urban Dynamometer Driving Schedule (UDDS) test cycles. The buses that were selected did represent a majority of the current national transit fleet. The selected buses also included hybrid and selective catalyst reduction (SCR) systems that are increasing in numbers in current transit vehicle fleets. The kinetic intensity of the tested duty cycle being the secondary driving factor, the engine emissions certification level had the dominant effect on NOx. With the exception of the 2008 model year bus, the biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel. CARB fuel had many more instances of a statistically significant effect of biodiesel by substantially increasing NOx. SCR systems proved effective at reducing NOx emissions to near the detection limit on all duty cycles and fuels, including B100. A hybrid system proved to significantly increase NOx emissions over a same model year bus with a conventional drivetrain and the same engine. Because all but one test bus were equipped with diesel particulate filter after-treatment, particulate matter (PM) emissions were negligible and trends could not be drawn. On the oldest sample bus without after-treatment, PM emissions were reduced with B20 blends. The project shows how fuel economy was not significantly changed by the engine certification level, except that the 2008 conventional bus had the best performance on all cycles while all other buses had very similar results on each cycle. All buses had lower fuel economy with increased kinetic intensity of the cycle.


Applied and Environmental Soil Science | 2011

Lead Speciation and Bioavailability in Apatite-Amended Sediments

Kirk G. Scheckel; Aaron Williams; Gregory Mc Dermott; David Gratson; Dean Neptune; James A. Ryan

The in situ sequestration of lead (Pb) in sediment with a phosphate amendment was investigated by Pb speciation and bioavailability. Sediment Pb in preamendment samples was identified as galena (PbS) with trace amounts of absorbed Pb. Sediment exposed to atmospheric conditions underwent conversion to hydrocerussite and anglesite. Sediments mixed with apatite exhibited limited conversion to pyromorphite, the hypothesized end product. Conversion of PbS to pyromorphite is inhibited under reducing conditions, and pyromorphite formation appears limited to reaction with pore water Pb and PbS oxidation products. Porewater Pb values were decreased by 94% or more when sediment was amended with apatite. The acute toxicity of the sediment Pb was evaluated with Hyalella azteca and bioaccumulation of Pb with Lumbriculus variegatus. The growth of H. azteca may be mildly inhibited in contaminated sediment, with apatite-amended sediments exhibiting on average a higher growth weight by approximately 20%. The bioaccumulation of Pb in L. variegatus tissue decreased with increased phosphate loading in contaminated sediment. The study indicates limited effectiveness of apatite in sequestering Pb if present as PbS under reducing conditions, but sequestration of porewater Pb and stabilization of near-surface sediment may be a feasible and alternative approach to decreasing potential toxicity of Pb.


Chemical Speciation and Bioavailability | 2011

Speciation and bioavailability of zinc in amended sediments

Aaron Williams; Kirk G. Scheckel; Gregory McDermott; David Gratson; Dean Neptune; James A. Ryan

Abstract The speciation and bioavailability of zinc (Zn) in smelter-contaminated sediments were investigated as a function of phosphate (apatite) and organic amendment loading rate. Zinc species identified in preamendment sediment were zinc hydroxide-like phases, sphalerite, and zinc sorbed to an iron oxide via X-ray adsorption near edge structure (XANES) spectroscopy. Four months after adding the amendments to the contaminated sediment, hopeite, a Zn phosphate mineral, was identified indicating phosphate was binding and sequestering available Zn and Zn pore water concentrations were decreased at levels of 90% or more. Laboratory experiments indicate organic amendments exhibit a limited effect and may hinder sequestration of pore water Zn when mixed with apatite. The acute toxicity of the sediment Zn was evaluated with Hyalella azteca, and bioaccumulation of Zn with Lumbriculus variegates. The survivability of H. azteca increased as a function of phosphate (apatite) loading rate. In contaminated sediment without apatite, no specimens of H. azteca survived. The bioaccumulation of Zn in L. variegates also followed a trend of decreased bioaccumulation with increased phosphate loading in the contaminated sediment. The research supports an association between Zn speciation and bioavailability.


Presented at the SAE 2013 World Congress and Exhibition, 16-18 April 2013, Detroit, Michigan; Related Information: Posted with permission | 2013

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

Aaron Williams; Jonathan Burton; Robert L. McCormick; Todd J. Toops; Andrew A. Wereszczak; Ethan E Fox; Michael J. Lance; Giovanni Cavataio; Douglas Allen Dobson; Jim Warner; Rasto Brezny; Ke Nguyen; D. William Brookshear

Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.


SAE International Journal of Fuels and Lubricants | 2011

Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems

Xin He; Aaron Williams; Earl Christensen; Jonathan Burton; Robert L. McCormick

Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometermorexa0» (MAD) using the U.S. Environmental Protection Agencys Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous operation under DPF regeneration events. During the second stage of HD testing, the ULSD lube-oil dilution levels fell from 1.5% to 0.8%, while for B20, lube-oil dilution levels fell from 1.6% to 1.0%, but the fuel in the oil was 36% biodiesel. For the LD vehicle tests, the frequency of DPF regeneration events was observed to be the same for both ULSD and B20. No significant difference between the two fuels estimated soot loading was detected by the engine control unit (ECU), although a 23% slower rate of increase in differential pressure across DPF was observed with B20. It appears that the ECU estimated soot loading is based on the engine map, not taking advantage of the lower engine-out particulate matter from the use of biodiesel. After 4,000 miles of LD vehicle operation with ULSD, fuel dilution in the lube-oil samples showed total dilution levels of 4.1% diesel. After 4,000 miles of operation with B20, total fuel in oil dilution levels were 6.7% consisting of 3.6% diesel fuel and 3.1% biodiesel. Extrapolation to the 10,000-mile oil drain interval with B20 suggests that the total fuel content in the oil could reach 12%, compared to 5% for operation on ULSD. Analysis of the oil samples also included measurement of total acid number, total base number, viscosity, soot, metals and wear scar; however, little difference in these parameters was noted.«xa0less

Collaboration


Dive into the Aaron Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Earl Christensen

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

John Ireland

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jon Luecke

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kirk G. Scheckel

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Michael J. Lance

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd J. Toops

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jonathan Burton

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Robert Hayes

National Renewable Energy Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge