Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aarthi Narayanan is active.

Publication


Featured researches published by Aarthi Narayanan.


Journal of Biological Chemistry | 2013

Exosomes Derived from HIV-1-infected Cells Contain Trans-activation Response Element RNA

Aarthi Narayanan; Sergey Iordanskiy; Ravi Das; Rachel Van Duyne; Steven Santos; Elizabeth Jaworski; Irene Guendel; Gavin Sampey; Elizabeth Dalby; Maria Iglesias-Ussel; Anastas Popratiloff; Ramin M. Hakami; Kylene Kehn-Hall; Mary Young; Caroline Subra; Caroline Gilbert; Charles L. Bailey; Fabio Romerio; Fatah Kashanchi

Background: Exosomes are extracellular vesicles that have been implicated in intercellular communication. Results: Exosomes that originate from human cells infected with HIV-1 contain virus-derived small noncoding RNA. Conclusion: Virus-derived small RNA present in exosomes exert functional consequences in naive recipient cells. Significance: Viral RNA molecules present in exosomes may be critical mediators of intercellular viral spread in infected hosts. Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 104–106 copies/ml TAR RNA in exosomes derived from infected culture supernatants and 103 copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS.


Journal of Biological Chemistry | 2010

Absence of DICER in Monocytes and Its Regulation by HIV-1

William Coley; Rachel Van Duyne; Lawrence Carpio; Irene Guendel; Kylene Kehn-Hall; Sébastien Alain Chevalier; Aarthi Narayanan; Truong Luu; Norman H. Lee; Zachary Klase; Fatah Kashanchi

MicroRNAs (miRNAs) are a class of small RNA molecules that function to control gene expression and restrict viral replication in host cells. The production of miRNAs is believed to be dependent upon the DICER enzyme. Available evidence suggests that in T lymphocytes, HIV-1 can both suppress and co-opt the hosts miRNA pathway for its own benefit. In this study, we examined the state of miRNA production in monocytes and macrophages as well as the consequences of viral infection upon the production of miRNA. Monocytes in general express low amounts of miRNA-related proteins, and DICER in particular could not be detected until after monocytes were differentiated into macrophages. In the case where HIV-1 was present prior to differentiation, the expression of DICER was suppressed. MicroRNA chip results for RNA isolated from transfected and treated cells indicated that a drop in miRNA production coincided with DICER protein suppression in macrophages. We found that the expression of DICER in monocytes is restricted by miR-106a, but HIV-1 suppressed DICER expression via the viral gene Vpr. Additionally, analysis of miRNA expression in monocytes and macrophages revealed evidence that some miRNAs can be processed by both DICER and PIWIL4. Results presented here have implications for both the pathology of viral infections in macrophages and the biogenesis of miRNAs. First, HIV-1 suppresses the expression and function of DICER in macrophages via a previously unknown mechanism. Second, the presence of miRNAs in monocytes lacking DICER indicates that some miRNAs can be generated by proteins other than DICER.


Frontiers in Microbiology | 2012

HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways.

Robert Currer; Rachel Van Duyne; Elizabeth Jaworski; Irene Guendel; Gavin Sampey; Ravi Das; Aarthi Narayanan; Fatah Kashanchi

Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2–5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.


Journal of Biological Chemistry | 2014

Human T-lymphotropic Virus Type 1-infected Cells Secrete Exosomes That Contain Tax Protein * □

Elizabeth Jaworski; Aarthi Narayanan; Rachel Van Duyne; Shabana Shabbeer-Meyering; Sergey Iordanskiy; Mohammed Saifuddin; Ravi Das; Philippe V. Afonso; Gavin Sampey; Myung Ah Chung; Anastas Popratiloff; Bindesh Shrestha; Mohit Sehgal; Pooja Jain; Akos Vertes; Renaud Mahieux; Fatah Kashanchi

Background: Extracellular exosomes contain various functional elements. Results: Exosomal Tax protein causes phenotypic changes in uninfected cells. Conclusion: Exosomes may play critical roles in extracellular delivery of oncogenic material derived from HTLV-1-infected cells. Significance: Exosomal delivery of Tax and other putative oncogenic components produced during HTLV-1 infection potentially contributes to pathogenesis of adult T-cell leukemia, myelopathy, or tropical spastic paraparesis. Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells.


Journal of Biological Chemistry | 2012

Induction of DNA Damage Signaling upon Rift Valley Fever Virus Infection Results in Cell Cycle Arrest and Increased Viral Replication

Alan Baer; Dana Austin; Aarthi Narayanan; Taissia G. Popova; Markus Kainulainen; Charles G. Bailey; Fatah Kashanchi; Friedemann Weber; Kylene Kehn-Hall

Background: RVFV is a cytoplasmic replicating RNA virus that infects both humans and livestock. Results: DNA damage signaling and cell cycle arrest are induced following RVFV infection. Conclusion: The ATM signaling pathway and cell cycle arrest are important for RVFV replication. Significance: Studying virally induced signaling pathways is important for host-based therapeutic design and understanding host-pathogen interactions. Rift Valley fever virus (RVFV) is a highly pathogenic arthropod-borne virus infecting a wide range of vertebrate hosts. Of particular interest is the nonstructural NSs protein, which forms large filamentous fibril bundles in the nucleus. Past studies have shown NSs to be a multifaceted protein important for virulence through modulation of the interferon response as well acting as a general inhibitor of transcription. Here we investigated the regulation of the DNA damage signaling cascades by RVFV infection and found virally inducted phosphorylation of the classical DNA damage signaling proteins, ataxia-telangiectasia mutated (ATM) (Ser-1981), Chk.2 (Thr-68), H2A.X (Ser-139), and p53 (Ser-15). In contrast, ataxia-telangiectasia mutated and Rad3-related kinase (ATR) (Ser-428) phosphorylation was decreased following RVFV infection. Importantly, both the attenuated vaccine strain MP12 and the fully virulent strain ZH548 showed strong parallels in their up-regulation of the ATM arm of the DNA damage response and in the down-regulation of the ATR pathway. The increase in DNA damage signaling proteins did not result from gross DNA damage as no increase in DNA damage was observed following infection. Rather the DNA damage signaling was found to be dependent on the viral protein NSs, as an NSs mutant virus was not found to induce the equivalent signaling pathways. RVFV MP12-infected cells also displayed an S phase arrest that was found to be dependent on NSs expression. Use of ATM and Chk.2 inhibitors resulted in a marked decrease in S phase arrest as well as viral production. These results indicate that RVFV NSs induces DNA damage signaling pathways that are beneficial for viral replication.


PLOS ONE | 2010

Reverse-phase phosphoproteome analysis of signaling pathways induced by Rift valley fever virus in human small airway epithelial cells.

Taissia G. Popova; Michael J. Turell; Virginia Espina; Kylene Kehn-Hall; Jessica Kidd; Aarthi Narayanan; Lance A. Liotta; Emanuel F. Petricoin; Fatah Kashanchi; Charles L. Bailey; Serguei G. Popov

Rift valley fever virus (RVFV) infection is an emerging zoonotic disease endemic in many countries of sub-Saharan Africa and in Egypt. In this study we show that human small airway epithelial cells are highly susceptible to RVFV virulent strain ZH-501 and the attenuated strain MP-12. We used the reverse-phase protein arrays technology to identify phosphoprotein signaling pathways modulated during infection of cultured airway epithelium. ZH-501 infection induced activation of MAP kinases (p38, JNK and ERK) and downstream transcriptional factors [STAT1 (Y701), ATF2 (T69/71), MSK1 (S360) and CREB (S133)]. NF-κB phosphorylation was also increased. Activation of p53 (S15, S46) correlated with the increased levels of cleaved effector caspase-3, -6 and -7, indicating activation of the extrinsic apoptotic pathway. RVFV infection downregulated phosphorylation of a major anti-apoptotic regulator of survival pathways, AKT (S473), along with phosphorylation of FOX 01/03 (T24/31) which controls cell cycle arrest downstream from AKT. Consistent with this, the level of apoptosis inhibitor XIAP was decreased. However, the intrinsic apoptotic pathway marker, caspase-9, demonstrated only a marginal activation accompanied by an increased level of the inhibitor of apoptosome formation, HSP27. Concentration of the autophagy marker, LC3B, which often accompanies the pro-survival signaling, was decreased. Cumulatively, our analysis of RVFV infection in lung epithelium indicated a viral strategy directed toward the control of cell apoptosis through a number of transcriptional factors. Analyses of MP-12 titers in challenged cells in the presence of MAPK inhibitors indicated that activation of p38 represents a protective cell response while ERK activation controls viral replication.


PLOS ONE | 2012

Modulation of GSK-3β Activity in Venezuelan Equine Encephalitis Virus Infection

Kylene Kehn-Hall; Aarthi Narayanan; Lindsay Lundberg; Gavin Sampey; Chelsea Pinkham; Irene Guendel; Rachel Van Duyne; Svetlana Senina; Kimberly L. W. Schultz; Eric Stavale; M. Javad Aman; Charles L. Bailey; Fatah Kashanchi

Alphaviruses, including Venezuelan Equine Encephalitis Virus (VEEV), cause disease in both equine and humans that exhibit overt encephalitis in a significant percentage of cases. Features of the host immune response and tissue-specific responses may contribute to fatal outcomes as well as the development of encephalitis. It has previously been shown that VEEV infection of mice induces transcription of pro-inflammatory cytokines genes (e.g., IFN-γ, IL-6, IL-12, iNOS and TNF-α) within 6 h. GSK-3β is a host protein that is known to modulate pro-inflammatory gene expression and has been a therapeutic target in neurodegenerative disorders such as Alzheimers. Hence inhibition of GSK-3β in the context of encephalitic viral infections has been useful in a neuroprotective capacity. Small molecule GSK-3β inhibitors and GSK-3β siRNA experiments indicated that GSK-3β was important for VEEV replication. Thirty-eight second generation BIO derivatives were tested and BIOder was found to be the most potent inhibitor, with an IC50 of ∼0.5 µM and a CC50 of >100 µM. BIOder was a more potent inhibitor of GSK-3β than BIO, as demonstrated through in vitro kinase assays from uninfected and infected cells. Size exclusion chromatography experiments demonstrated that GSK-3β is found in three distinct complexes in VEEV infected cells, whereas GSK-3β is only present in one complex in uninfected cells. Cells treated with BIOder demonstrated an increase in the anti-apoptotic gene, survivin, and a decrease in the pro-apoptotic gene, BID, suggesting that modulation of pro- and anti-apoptotic genes contributes to the protective effect of BIOder treatment. Finally, BIOder partially protected mice from VEEV induced mortality. Our studies demonstrate the utility of GSK-3β inhibitors for modulating VEEV infection.


PLOS ONE | 2012

p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

Dana Austin; Alan Baer; Lindsay Lundberg; Nazly Shafagati; Annalise Schoonmaker; Aarthi Narayanan; Taissia G. Popova; Jean Jacques Panthier; Fatah Kashanchi; Charles L. Bailey; Kylene Kehn-Hall

Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.


Journal of Biological Chemistry | 2012

Curcumin Inhibits Rift Valley Fever Virus Replication in Human Cells

Aarthi Narayanan; Kylene Kehn-Hall; Svetlana Senina; Lindsay Lundberg; Rachel Van Duyne; Irene Guendel; Ravi Das; Alan Baer; Laura M. Bethel; Michael J. Turell; Amy L. Hartman; Bhaskar C. Das; Charles L. Bailey; Fatah Kashanchi

Background: Rift Valley fever virus is a single-stranded RNA virus that causes disease in humans and livestock. Results: Rift Valley fever virus infection activates the host NFκB signaling cascade. Conclusion: NFκB inhibitors, particularly curcumin, down-regulate virus in both in vitro and in vivo models. Significance: Novel versions of host components resulting from an infection make them ideal therapeutic targets. Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets.


PLOS ONE | 2011

Bacillus anthracis interacts with plasmin(ogen) to evade C3b-dependent innate immunity.

Myung-Chul Chung; Jessica H. Tonry; Aarthi Narayanan; Nathan P. Manes; Ryan S. Mackie; Bradford W. Gutting; Dhritiman V. Mukherjee; Taissia G. Popova; Fatah Kashanchi; Charles L. Bailey; Serguei G. Popov

The causative agent of anthrax, Bacillus anthracis, is capable of circumventing the humoral and innate immune defense of the host and modulating the blood chemistry in circulation to initiate a productive infection. It has been shown that the pathogen employs a number of strategies against immune cells using secreted pathogenic factors such as toxins. However, interference of B. anthracis with the innate immune system through specific interaction of the spore surface with host proteins such as the complement system has heretofore attracted little attention. In order to assess the mechanisms by which B. anthracis evades the defense system, we employed a proteomic analysis to identify human serum proteins interacting with B. anthracis spores, and found that plasminogen (PLG) is a major surface-bound protein. PLG efficiently bound to spores in a lysine- and exosporium-dependent manner. We identified α-enolase and elongation factor tu as PLG receptors. PLG-bound spores were capable of exhibiting anti-opsonic properties by cleaving C3b molecules in vitro and in rabbit bronchoalveolar lavage fluid, resulting in a decrease in macrophage phagocytosis. Our findings represent a step forward in understanding the mechanisms involved in the evasion of innate immunity by B. anthracis through recruitment of PLG resulting in the enhancement of anti-complement and anti-opsonization properties of the pathogen.

Collaboration


Dive into the Aarthi Narayanan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gavin Sampey

George Mason University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Forrest Keck

George Mason University

View shared research outputs
Researchain Logo
Decentralizing Knowledge