Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moushimi Amaya is active.

Publication


Featured researches published by Moushimi Amaya.


Virology | 2014

Reactive oxygen species activate NFκB (p65) and p53 and induce apoptosis in RVFV infected liver cells

Aarthi Narayanan; Moushimi Amaya; Kelsey Voss; Myung Chung; Ashwini Benedict; Gavin Sampey; Kylene Kehn-Hall; Alessandra Luchini; Lance A. Liotta; Charles L. Bailey; Ajit Kumar; Sina Bavari; Ramin M. Hakami; Fatah Kashanchi

Rift Valley fever virus (RVFV) infection is often associated with pronounced liver damage. Previously, our studies revealed altered host phospho-signaling responses (NFκB, MAPK and DNA damage responses) in RVFV infected epithelial cells that correlated with a cellular stress response. Here, we report that RVFV infection of liver cells leads to an increase in reactive oxygen species (ROS). Our data suggests the presence of the viral protein NSs in the mitochondria of infected cells, hence contributing to early increase in ROS. Increased ROS levels correlated with activation of NFκB (p65) and p53 responses, which in conjunction with infection, was also reflected as macromolecular rearrangements observed using size fractionation of protein lysates. Additionally, we documented an increase in cytokine expression and pro-apoptotic gene expression with infection, which was reversed with antioxidant treatment. Collectively, we identified ROS and oxidative stress as critical contributors to apoptosis of liver cells during RVFV infection.


Antiviral Research | 2013

Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication.

Lindsay Lundberg; Chelsea Pinkham; Alan Baer; Moushimi Amaya; Aarthi Narayanan; Kylie M. Wagstaff; David A. Jans; Kylene Kehn-Hall

Targeting host responses to invading viruses has been the focus of recent antiviral research. Venezuelan Equine Encephalitis Virus (VEEV) is able to modulate host transcription and block nuclear trafficking at least partially due to its capsid protein forming a complex with the host proteins importin α/β1 and CRM1. We hypothesized that disrupting the interaction of capsid with importin α/β1 or the interaction of capsid with CRM1 would alter capsid localization, thereby lowering viral titers in vitro. siRNA mediated knockdown of importin α, importin β1, and CRM1 altered capsid localization, confirming their role in modulating capsid trafficking. Mifepristone and ivermectin, inhibitors of importin α/β-mediated import, were able to reduce nuclear-associated capsid, while leptomycin B, a potent CRM1 inhibitor, confined capsid to the nucleus. In addition to altering the level and distribution of capsid, the three inhibitors were able to reduce viral titers in a relevant mammalian cell line with varying degrees of efficacy. The inhibitors were also able to reduce the cytopathic effects associated with VEEV infection, hinting that nuclear import inhibitors may be protecting cells from apoptosis in addition to disrupting the function of an essential viral protein. Our results confirm that VEEV uses host importins and exportins during part of its life cycle. Further, it suggests that temporarily targeting host proteins that are hijacked for use by viruses is a viable antiviral therapy.


PLOS ONE | 2014

The Role of IKKβ in Venezuelan Equine Encephalitis Virus Infection

Moushimi Amaya; Kelsey Voss; Gavin Sampey; Svetlana Senina; Cynthia de la Fuente; Claudius Mueller; Valerie S. Calvert; Kylene Kehn-Hall; Calvin Carpenter; Fatah Kashanchi; Charles L. Bailey; Soren Mogelsvang; Emanuel F. Petricoin; Aarthi Narayanan

Venezuelan equine encephalitis virus (VEEV) belongs to the genus Alphavirus, family Togaviridae. VEEV infection is characterized by extensive inflammation and studies from other laboratories implicated an involvement of the NF-κB cascade in the in vivo pathology. Initial studies indicated that at early time points of VEEV infection, the NF-κB complex was activated in cells infected with the TC-83 strain of VEEV. One upstream kinase that contributes to the phosphorylation of p65 is the IKKβ component of the IKK complex. Our previous studies with Rift valley fever virus, which exhibited early activation of the NF-κB cascade in infected cells, had indicated that the IKKβ component underwent macromolecular reorganization to form a novel low molecular weight form unique to infected cells. This prompted us to investigate if the IKK complex undergoes a comparable macromolecular reorganization in VEEV infection. Size-fractionated VEEV infected cell extracts indicated a macromolecular reorganization of IKKβ in VEEV infected cells that resulted in formation of lower molecular weight complexes. Well-documented inhibitors of IKKβ function, BAY-11-7082, BAY-11-7085 and IKK2 compound IV, were employed to determine whether IKKβ function was required for the production of infectious progeny virus. A decrease in infectious viral particles and viral RNA copies was observed with inhibitor treatment in the attenuated and virulent strains of VEEV infection. In order to further validate the requirement of IKKβ for VEEV replication, we over-expressed IKKβ in cells and observed an increase in viral titers. In contrast, studies carried out using IKKβ−/− cells demonstrated a decrease in VEEV replication. In vivo studies demonstrated that inhibitor treatment of TC-83 infected mice increased their survival. Finally, proteomics studies have revealed that IKKβ may interact with the viral protein nsP3. In conclusion, our studies have revealed that the host IKKβ protein may be critically involved in VEEV replication.


Biochemical and Biophysical Research Communications | 2011

Protein prenylation: a new mode of host-pathogen interaction.

Moushimi Amaya; Ancha Baranova; Monique L. van Hoek

Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction.


Virology | 2014

Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells.

Kelsey Voss; Moushimi Amaya; Claudius Mueller; Brian Roberts; Kylene Kehn-Hall; Charles L. Bailey; Emanuel F. Petricoin; Aarthi Narayanan

Abstract New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses.


PLOS ONE | 2015

The Ubiquitin Proteasome System Plays a Role in Venezuelan Equine Encephalitis Virus Infection

Moushimi Amaya; Forrest Keck; Michael Lindquist; Kelsey Voss; Lauren Scavone; Kylene Kehn-Hall; Brian P Roberts; Charles A. Bailey; Connie S. Schmaljohn; Aarthi Narayanan

Many viruses have been implicated in utilizing or modulating the Ubiquitin Proteasome System (UPS) to enhance viral multiplication and/or to sustain a persistent infection. The mosquito-borne Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is an important biodefense pathogen and select agent. There are currently no approved vaccines or therapies for VEEV infections; therefore, it is imperative to identify novel targets for therapeutic development. We hypothesized that a functional UPS is required for efficient VEEV multiplication. We have shown that at non-toxic concentrations Bortezomib, a FDA-approved inhibitor of the proteasome, proved to be a potent inhibitor of VEEV multiplication in the human astrocytoma cell line U87MG. Bortezomib inhibited the virulent Trinidad donkey (TrD) strain and the attenuated TC-83 strain of VEEV. Additional studies with virulent strains of Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus (WEEV) demonstrated that Bortezomib is a broad spectrum inhibitor of the New World alphaviruses. Time-of-addition assays showed that Bortezomib was an effective inhibitor of viral multiplication even when the drug was introduced many hours post exposure to the virus. Mass spectrometry analyses indicated that the VEEV capsid protein is ubiquitinated in infected cells, which was validated by confocal microscopy and immunoprecipitation assays. Subsequent studies revealed that capsid is ubiquitinated on K48 during early stages of infection which was affected by Bortezomib treatment. This study will aid future investigations in identifying host proteins as potential broad spectrum therapeutic targets for treating alphavirus infections.


Antiviral Research | 2016

Venezuelan equine encephalitis virus non-structural protein 3 (nsP3) interacts with RNA helicases DDX1 and DDX3 in infected cells

Moushimi Amaya; Taryn Brooks-Faulconer; Tyler Lark; Forrest Keck; Charles L. Bailey; Venu Raman; Aarthi Narayanan

Abstract The mosquito-borne New World alphavirus, Venezuelan equine encephalitis virus (VEEV) is a Category B select agent with no approved vaccines or therapies to treat infected humans. Therefore it is imperative to identify novel targets that can be targeted for effective therapeutic intervention. We aimed to identify and validate interactions of VEEV nonstructural protein 3 (nsP3) with host proteins and determine the consequences of these interactions to viral multiplication. We used a HA tagged nsP3 infectious clone (rTC-83-nsP3-HA) to identify and validate two RNA helicases: DDX1 and DDX3 that interacted with VEEV-nsP3. In addition, DDX1 and DDX3 knockdown resulted in a decrease in infectious viral titers. Furthermore, we propose a functional model where the nsP3:DDX3 complex interacts with the host translational machinery and is essential in the viral life cycle. This study will lead to future investigations in understanding the importance of VEEV-nsP3 to viral multiplication and apply the information for the discovery of novel host targets as therapeutic options.


Fems Immunology and Medical Microbiology | 2014

The role of the IKK complex in viral infections

Moushimi Amaya; Forrest Keck; Charles L. Bailey; Aarthi Narayanan

Abstract The NF‐κB signal transduction pathway is a critical regulator of multiple cellular functions that ultimately shift the balance between cell survival and death. The cascade is activated by many intrinsic and extrinsic stimuli, which is transduced via adaptor proteins to phosphorylate the IκB kinase (IKK) complex, which in turn phosphorylates the inhibitory IκBα protein to undergo proteasomal degradation and sets in motion nuclear events in response to the initial stimulus. Viruses are important modulators of the NF‐κB cascade and have evolved multiple mechanisms to activate or inhibit this pathway in a manner conducive to viral multiplication and establishment of a productive infectious cycle. This is a subject of extensive research by multiple laboratories whereby unraveling the interactions between specific viral components and members of the NF‐κB signal transduction cascade can shed unique perspectives on infection associated pathogenesis and novel therapeutic targets. In this review, we highlight the interactions between components of the IKK complex and multiple RNA and DNA viruses with the emphasis on mechanisms by which the interaction feeds the infection. Understanding these interactions will shed light on the exploitative capabilities of viruses to maintain an environment favorable for a productive infection.


Fems Immunology and Medical Microbiology | 2014

Proteomic strategies for the discovery of novel diagnostic and therapeutic targets for infectious diseases

Moushimi Amaya; Alan Baer; Kelsey Voss; Catherine E. Campbell; Claudius Mueller; Charles L. Bailey; Kylene Kehn-Hall; Emanuel F. Petricoin; Aarthi Narayanan

Abstract Viruses have developed numerous and elegant strategies to manipulate the host cell machinery to establish a productive infectious cycle. The interaction of viral proteins with host proteins plays an important role in infection and pathogenesis, often bypassing traditional host defenses such as the interferon response and apoptosis. Host–viral protein interactions can be studied using a variety of proteomic approaches ranging from genetic and biochemical to large‐scale high‐throughput technologies. Protein interactions between host and viral proteins are greatly influenced by host signal transduction pathways. In this review, we will focus on comparing proteomic information obtained through differing technologies and how their integration can be used to determine the functional aspect of the host response to infection. We will briefly review and evaluate techniques employed to elucidate viral–host interactions with a primary focus on Protein Microarrays (PMA) and Mass Spectrometry (MS) as potential tools in the discovery of novel therapeutic targets. As many potential molecular markers and targets are proteins, proteomic profiling is expected to yield both clearer and more direct answers to functional and pharmacologic questions.


Antiviral Research | 2015

Characterizing the effect of Bortezomib on Rift Valley Fever Virus multiplication

Forrest Keck; Moushimi Amaya; Kylene Kehn-Hall; Brian Roberts; Charles L. Bailey; Aarthi Narayanan

Rift Valley Fever Virus (RVFV) belongs to the family Bunyaviridae and is a known cause of epizootics and epidemics in Africa and the Middle East. With no FDA approved therapeutics available to treat RVFV infection, understanding the interactions between the virus and the infected host is crucial to developing novel therapeutic strategies. Here, we investigated the requirement of the ubiquitin-proteasome system (UPS) for the establishment of a productive RVFV infection. It was previously shown that the UPS plays a central role in RVFV multiplication involving degradation of PKR and p62 subunit of TFIIH. Using the FDA-approved proteasome inhibitor Bortezomib, we observed robust inhibition of intracellular and extracellular viral loads. Bortezomib treatment did not affect the nuclear/cytoplasmic distribution of the non-structural S-segment protein (NSs); however, the ability of NSs to form nuclear filaments was abolished as a result of Bortezomib treatment. In silico ubiquitination prediction analysis predicted that known NSs interactors (SAP30, YY1, and mSin3A) have multiple putative ubiquitination sites, while NSs itself was not predicted to be ubiquitinated. Immunoprecipitation studies indicated a decrease in interaction between SAP30 - NSs, and mSin3A - NSs in the context of Bortezomib treatment. This decrease in association between SAP30 - NSs also correlated with a decrease in the ubiquitination status of SAP30 with Bortezomib treatment. Bortezomib treatment, however, resulted in increased ubiquitination of mSin3A, suggesting that Bortezomib dynamically affects the ubiquitination status of host proteins that interact with NSs. Finally, we observed that expression of interferon beta (IFN-β) was increased in Bortezomib treated cells which indicated that the cellular antiviral mechanism was revived as a result of treatment and may contribute to control of viral multiplication.

Collaboration


Dive into the Moushimi Amaya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Forrest Keck

George Mason University

View shared research outputs
Top Co-Authors

Avatar

Kelsey Voss

George Mason University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Baer

George Mason University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge