Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aarti Venkat is active.

Publication


Featured researches published by Aarti Venkat.


PLOS Biology | 2012

Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species?

Ellen M. Leffler; Kevin Bullaughey; Daniel R. Matute; Wynn K. Meyer; Laure Ségurel; Aarti Venkat; Peter Andolfatto; Molly Przeworski

With the recent revolution in sequencing, we revisit the unresolved question of what influences the range and values of genetic diversity across taxa.


Science | 2012

A Fine-Scale Chimpanzee Genetic Map from Population Sequencing

Adam Auton; Adi Fledel-Alon; Susanne P. Pfeifer; Oliver Venn; Laure Ségurel; Teresa Street; Ellen M. Leffler; Rory Bowden; Ivy Aneas; John Broxholme; Peter Humburg; Zamin Iqbal; Gerton Lunter; Julian Maller; Ryan D. Hernandez; Cord Melton; Aarti Venkat; Marcelo A. Nobrega; Ronald E. Bontrop; Simon Myers; Peter Donnelly; Molly Przeworski; Gil McVean

Going Ape Over Genetic Maps Recombination is an important process in generating diversity and producing selectively advantageous genetic combinations. Thus, changes in recombination hotspots may influence speciation. To investigate the variation in recombination processes in humans and their closest existing relatives, Auton et al. (p. 193, published online 15 March) prepared a fine-scale genetic map of the Western chimpanzee and compared it with that of humans. While rates of recombination are comparable between humans and chimpanzees, the locations and genetic motifs associated with recombination differ between the species. Chimpanzees show similar genetic recombination rates as humans but differ in the genomic regions involved. To study the evolution of recombination rates in apes, we developed methodology to construct a fine-scale genetic map from high-throughput sequence data from 10 Western chimpanzees, Pan troglodytes verus. Compared to the human genetic map, broad-scale recombination rates tend to be conserved, but with exceptions, particularly in regions of chromosomal rearrangements and around the site of ancestral fusion in human chromosome 2. At fine scales, chimpanzee recombination is dominated by hotspots, which show no overlap with those of humans even though rates are similarly elevated around CpG islands and decreased within genes. The hotspot-specifying protein PRDM9 shows extensive variation among Western chimpanzees, and there is little evidence that any sequence motifs are enriched in hotspots. The contrasting locations of hotspots provide a natural experiment, which demonstrates the impact of recombination on base composition.


Science | 2015

Genomic signatures of evolutionary transitions from solitary to group living

Karen M. Kapheim; Hailin Pan; Cai Li; Daniela Puiu; Tanja Magoc; Hugh M. Robertson; Matthew E. Hudson; Aarti Venkat; Brielle J. Fischman; Alvaro G. Hernandez; Mark Yandell; Daniel Ence; Carson Holt; George D. Yocum; William P. Kemp; Jordi Bosch; Robert M. Waterhouse; Evgeny M. Zdobnov; Eckart Stolle; F. Bernhard Kraus; Sophie Helbing; Robin F. A. Moritz; Karl M. Glastad; Brendan G. Hunt; Michael A. D. Goodisman; Frank Hauser; Cornelis J. P. Grimmelikhuijzen; Daniel G. Pinheiro; Francis Morais Franco Nunes; Michelle Soares

For bees, many roads lead to social harmony Eusociality, where workers sacrifice their reproductive rights to support the colony, has evolved repeatedly and represents the most evolved form of social evolution in insects. Kapheim et al. looked across the genomes of 10 bee species with varying degrees of sociality to determine the underlying genomic contributions. No one genomic path led to eusociality, but similarities across genomes were seen in features such as increases in gene regulation and methylation. It also seems that selection pressures relaxed after the emergence of complex sociality. Science, this issue p. 1139 Social evolution in bees has followed diverse genomic paths but shares genomic patterns. The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genes involved in convergent evolution of eusociality in bees

S. Hollis Woodard; Brielle J. Fischman; Aarti Venkat; Matthew E. Hudson; Kranthi Varala; Sydney A. Cameron; Andrew G. Clark; Gene E. Robinson

Eusociality has arisen independently at least 11 times in insects. Despite this convergence, there are striking differences among eusocial lifestyles, ranging from species living in small colonies with overt conflict over reproduction to species in which colonies contain hundreds of thousands of highly specialized sterile workers produced by one or a few queens. Although the evolution of eusociality has been intensively studied, the genetic changes involved in the evolution of eusociality are relatively unknown. We examined patterns of molecular evolution across three independent origins of eusociality by sequencing transcriptomes of nine socially diverse bee species and combining these data with genome sequence from the honey bee Apis mellifera to generate orthologous sequence alignments for 3,647 genes. We found a shared set of 212 genes with a molecular signature of accelerated evolution across all eusocial lineages studied, as well as unique sets of 173 and 218 genes with a signature of accelerated evolution specific to either highly or primitively eusocial lineages, respectively. These results demonstrate that convergent evolution can involve a mosaic pattern of molecular changes in both shared and lineage-specific sets of genes. Genes involved in signal transduction, gland development, and carbohydrate metabolism are among the most prominent rapidly evolving genes in eusocial lineages. These findings provide a starting point for linking specific genetic changes to the evolution of eusociality.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The ABO blood group is a trans-species polymorphism in primates

Laure Ségurel; Emma E. Thompson; Timothée Flutre; Jessica N. Lovstad; Aarti Venkat; Susan W. Margulis; Jill A. Moyse; Steve L Ross; Kathryn C. Gamble; Guy Sella; Carole Ober; Molly Przeworski

The ABO histo-blood group, the critical determinant of transfusion incompatibility, was the first genetic polymorphism discovered in humans. Remarkably, ABO antigens are also polymorphic in many other primates, with the same two amino acid changes responsible for A and B specificity in all species sequenced to date. Whether this recurrence of A and B antigens is the result of an ancient polymorphism maintained across species or due to numerous, more recent instances of convergent evolution has been debated for decades, with a current consensus in support of convergent evolution. We show instead that genetic variation data in humans and gibbons as well as in Old World monkeys are inconsistent with a model of convergent evolution and support the hypothesis of an ancient, multiallelic polymorphism of which some alleles are shared by descent among species. These results demonstrate that the A and B blood groups result from a trans-species polymorphism among distantly related species and has remained under balancing selection for tens of millions of years—to date, the only such example in hominoids and Old World monkeys outside of the major histocompatibility complex.


Molecular Ecology | 2015

Evolutionary history inferred from the de novo assembly of a nonmodel organism, the blue-eyed black lemur

Wynn K. Meyer; Aarti Venkat; Amir R. Kermany; Bryce van de Geijn; Sidi Zhang; Molly Przeworski

Lemurs, the living primates most distantly related to humans, demonstrate incredible diversity in behaviour, life history patterns and adaptive traits. Although many lemur species are endangered within their native Madagascar, there is no high‐quality genome assembly from this taxon, limiting population and conservation genetic studies. One critically endangered lemur is the blue‐eyed black lemur Eulemur flavifrons. This species is fixed for blue irises, a convergent trait that evolved at least four times in primates and was subject to positive selection in humans, where 5′ regulatory variation of OCA2 explains most of the brown/blue eye colour differences. We built a de novo genome assembly for E. flavifrons, providing the most complete lemur genome to date, and a high confidence consensus sequence for close sister species E. macaco, the (brown‐eyed) black lemur. From diversity and divergence patterns across the genomes, we estimated a recent split time of the two species (160 Kya) and temporal fluctuations in effective population sizes that accord with known environmental changes. By looking for regions of unusually low diversity, we identified potential signals of directional selection in E. flavifrons at MITF, a melanocyte development gene that regulates OCA2 and has previously been associated with variation in human iris colour, as well as at several other genes involved in melanin biosynthesis in mammals. Our study thus illustrates how whole‐genome sequencing of a few individuals can illuminate the demographic and selection history of nonmodel species.


bioRxiv | 2015

Coevolution of male and female reproductive traits drive cascading reinforcement in Drosophila yakuba

Aaron A. Comeault; Aarti Venkat; Daniel R. Matute

When the ranges of two hybridizing species overlap, individuals may ‘waste’ gametes on inviable or infertile hybrids. In these cases, selection against maladaptive hybridization can lead to the evolution of enhanced reproductive isolation in a process called reinforcement. On the slopes of the African island of São Tomé, Drosophila yakuba and its endemic sister species D. santomea have a well-defined hybrid zone. Drosophila yakuba females from within this zone show increased postmating-prezygotic isolation towards D. santomea males when compared with D. yakuba females from allopatric populations. To understand why reinforced gametic isolation is confined to areas of secondary contact and has not spread throughout the entire D. yakuba geographic range, we studied the costs of reinforcement in D. yakuba using a combination of natural collections and experimental evolution. We found that D. yakuba males from sympatric populations sire fewer progeny than allopatric males when mated to allopatric D. yakuba females. Our results suggest that the correlated evolution of male and female reproductive traits in sympatric D. yakuba have associated costs (i.e., reduced male fertility) that prevent the alleles responsible for enhanced isolation from spreading outside the hybrid zone.


Nature Ecology and Evolution | 2018

Multinucleotide mutations cause false inferences of lineage-specific positive selection

Aarti Venkat; Matthew W. Hahn; Joseph W. Thornton

Phylogenetic tests of adaptive evolution, such as the widely used branch-site test (BST), assume that nucleotide substitutions occur singly and independently. Recent research has shown that errors at adjacent sites often occur during DNA replication, and the resulting multinucleotide mutations (MNMs) are overwhelmingly likely to be non-synonymous. To evaluate whether the BST misinterprets sequence patterns produced by MNMs as false support for positive selection, we analysed two genome-scale datasets—one from mammals and one from flies. We found that codons with multiple differences account for virtually all the support for lineage-specific positive selection in the BST. Simulations under conditions derived from these alignments but without positive selection show that realistic rates of MNMs cause a strong and systematic bias towards false inferences of selection. This bias is sufficient under empirically derived conditions to produce false positive inferences as often as the BST infers positive selection from the empirical data. Although some genes with BST-positive results may have evolved adaptively, the test cannot distinguish sequence patterns produced by authentic positive selection from those caused by neutral fixation of MNMs. Many published inferences of adaptive evolution using this technique may therefore be artefacts of model violation caused by unincorporated neutral mutational processes. We introduce a model that incorporates MNMs and may help to ameliorate this bias.The branch-site test is commonly used to identify genes under positive selection. Here, the authors show that multinucleotide mutations can lead to false signatures of positive selection when using this test and develop a model that ameliorates the problem.


bioRxiv | 2017

Multinucleotide mutations cause false inferences of positive selection

Aarti Venkat; Matthew W. Hahn; Joseph W. Thornton

Phylogenetic tests of adaptive evolution, which infer positive selection from an excess of nonsynonymous changes, assume that nucleotide substitutions occur singly and independently. But recent research has shown that multiple errors at adjacent sites often occur in single events during DNA replication. These multinucleotide mutations (MNMs) are overwhelmingly likely to be nonsynonymous. We therefore evaluated whether phylogenetic tests of adaptive evolution, such as the widely used branch-site test, might misinterpret sequence patterns produced by MNMs as false support for positive selection. We explored two genome-wide datasets comprising thousands of coding alignments – one from mammals and one from flies – and found that codons with multiple differences (CMDs) account for virtually all the support for lineage-specific positive selection inferred by the branch-site test. Simulations under genome-wide, empirically derived conditions without positive selection show that realistic rates of MNMs cause a strong and systematic bias in the branch-site and related tests; the bias is sufficient to produce false positive inferences approximately as often as the branch-site test infers positive selection from the empirical data. Our analysis indicates that genes may often be inferred to be under positive selection simply because they stochastically accumulated one or a few MNMs. Because these tests do not reliably distinguish sequence patterns produced by authentic positive selection from those caused by neutral fixation of MNMs, many published inferences of adaptive evolution using these techniques may therefore be artifacts of model violation caused by unincorporated neutral mutational processes. We develop an alternative model that incorporates MNMs and may be helpful in reducing this bias.


Proceedings of the Royal Society B: Biological Sciences | 2016

Correlated evolution of male and female reproductive traits drive a cascading effect of reinforcement in Drosophila yakuba.

Aaron A. Comeault; Aarti Venkat; Daniel R. Matute

Collaboration


Dive into the Aarti Venkat's collaboration.

Top Co-Authors

Avatar

Daniel R. Matute

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron A. Comeault

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew W. Hahn

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Auton

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge