Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Auton is active.

Publication


Featured researches published by Adam Auton.


Bioinformatics | 2011

The variant call format and VCFtools

Petr Danecek; Adam Auton; Gonçalo R. Abecasis; Cornelis A. Albers; Eric Banks; Mark A DePristo; Robert E. Handsaker; Gerton Lunter; Gabor T. Marth; Stephen T. Sherry; Gilean McVean; Richard Durbin

Summary: The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. Availability: http://vcftools.sourceforge.net Contact: [email protected]


Nature | 2008

Genes mirror geography within Europe.

John Novembre; Toby Johnson; Katarzyna Bryc; Zoltán Kutalik; Adam R. Boyko; Adam Auton; Amit Indap; Karen S. King; Sven Bergmann; Matthew R. Nelson; Matthew Stephens; Carlos Bustamante

Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely spaced populations. Here we characterize genetic variation in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. Despite low average levels of genetic differentiation among Europeans, we find a close correspondence between genetic and geographic distances; indeed, a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans. The results emphasize that when mapping the genetic basis of a disease phenotype, spurious associations can arise if genetic structure is not properly accounted for. In addition, the results are relevant to the prospects of genetic ancestry testing; an individual’s DNA can be used to infer their geographic origin with surprising accuracy—often to within a few hundred kilometres.


Nature | 2015

An integrated map of structural variation in 2,504 human genomes

Peter H. Sudmant; Tobias Rausch; Eugene J. Gardner; Robert E. Handsaker; Alexej Abyzov; John Huddleston; Zhang Y; Kai Ye; Goo Jun; Markus His Yang Fritz; Miriam K. Konkel; Ankit Malhotra; Adrian M. Stütz; Xinghua Shi; Francesco Paolo Casale; Jieming Chen; Fereydoun Hormozdiari; Gargi Dayama; Ken Chen; Maika Malig; Mark Chaisson; Klaudia Walter; Sascha Meiers; Seva Kashin; Erik Garrison; Adam Auton; Hugo Y. K. Lam; Xinmeng Jasmine Mu; Can Alkan; Danny Antaki

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.


Nature | 2010

Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication

Bridgett M. vonHoldt; John P. Pollinger; Kirk E. Lohmueller; Eunjung Han; Heidi G. Parker; Pascale Quignon; Jeremiah D. Degenhardt; Adam R. Boyko; Dent Earl; Adam Auton; Andrew R. Reynolds; Kasia Bryc; Abra Brisbin; James C. Knowles; Dana S. Mosher; Tyrone C. Spady; Abdel G. Elkahloun; Eli Geffen; Malgorzata Pilot; Włodzimierz Jędrzejewski; Claudia Greco; Ettore Randi; Danika L. Bannasch; Alan N. Wilton; Jeremy Shearman; Marco Musiani; Michelle Cargill; Paul Glyn Jones; Zuwei Qian; Wei Huang

Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.


Nature Genetics | 2008

A common sequence motif associated with recombination hot spots and genome instability in humans

Simon Myers; Colin Freeman; Adam Auton; Peter Donnelly; Gil McVean

In humans, most meiotic crossover events are clustered into short regions of the genome known as recombination hot spots. We have previously identified DNA motifs that are enriched in hot spots, particularly the 7-mer CCTCCCT. Here we use the increased hot-spot resolution afforded by the Phase 2 HapMap and novel search methods to identify an extended family of motifs based around the degenerate 13-mer CCNCCNTNNCCNC, which is critical in recruiting crossover events to at least 40% of all human hot spots and which operates on diverse genetic backgrounds in both sexes. Furthermore, these motifs are found in hypervariable minisatellites and are clustered in the breakpoint regions of both disease-causing nonallelic homologous recombination hot spots and common mitochondrial deletion hot spots, implicating the motif as a driver of genome instability.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-wide patterns of population structure and admixture in West Africans and African Americans

Katarzyna Bryc; Adam Auton; Matthew R. Nelson; Jorge R. Oksenberg; Stephen L. Hauser; Scott M. Williams; Alain Froment; Jean-Marie Bodo; Charles Wambebe; Sarah A. Tishkoff; Carlos Bustamante

Quantifying patterns of population structure in Africans and African Americans illuminates the history of human populations and is critical for undertaking medical genomic studies on a global scale. To obtain a fine-scale genome-wide perspective of ancestry, we analyze Affymetrix GeneChip 500K genotype data from African Americans (n = 365) and individuals with ancestry from West Africa (n = 203 from 12 populations) and Europe (n = 400 from 42 countries). We find that population structure within the West African sample reflects primarily language and secondarily geographical distance, echoing the Bantu expansion. Among African Americans, analysis of genomic admixture by a principal component-based approach indicates that the median proportion of European ancestry is 18.5% (25th–75th percentiles: 11.6–27.7%), with very large variation among individuals. In the African-American sample as a whole, few autosomal regions showed exceptionally high or low mean African ancestry, but the X chromosome showed elevated levels of African ancestry, consistent with a sex-biased pattern of gene flow with an excess of European male and African female ancestry. We also find that genomic profiles of individual African Americans afford personalized ancestry reconstructions differentiating ancient vs. recent European and African ancestry. Finally, patterns of genetic similarity among inferred African segments of African-American genomes and genomes of contemporary African populations included in this study suggest African ancestry is most similar to non-Bantu Niger-Kordofanian-speaking populations, consistent with historical documents of the African Diaspora and trans-Atlantic slave trade.


Science | 2011

Classic selective sweeps were rare in recent human evolution

Ryan D. Hernandez; Joanna L. Kelley; Eyal Elyashiv; Melton Sc; Adam Auton; Gilean McVean; Guy Sella; Molly Przeworski

Much human genetic variation is likely due to purifying selection against deleterious mutations. Efforts to identify the genetic basis of human adaptations from polymorphism data have sought footprints of “classic selective sweeps” (in which a beneficial mutation arises and rapidly fixes in the population).Yet it remains unknown whether this form of natural selection was common in our evolution. We examined the evidence for classic sweeps in resequencing data from 179 human genomes. As expected under a recurrent-sweep model, we found that diversity levels decrease near exons and conserved noncoding regions. In contrast to expectation, however, the trough in diversity around human-specific amino acid substitutions is no more pronounced than around synonymous substitutions. Moreover, relative to the genome background, amino acid and putative regulatory sites are not significantly enriched in alleles that are highly differentiated between populations. These findings indicate that classic sweeps were not a dominant mode of human adaptation over the past ~250,000 years.


Nature Genetics | 2012

Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel

Matthew Horton; Angela M. Hancock; Yu S. Huang; Christopher Toomajian; Susanna Atwell; Adam Auton; N. Wayan Muliyati; Alexander Platt; F. Gianluca Sperone; Bjarni J. Vilhjálmsson; Magnus Nordborg; Justin O. Borevitz; Joy Bergelson

Arabidopsis thaliana is native to Eurasia and is naturalized across the world. Its ability to be easily propagated and its high phenotypic variability make it an ideal model system for functional, ecological and evolutionary genetics. To date, analyses of the natural genetic variation of A. thaliana have involved small numbers of individual plants or genetic markers. Here we genotype 1,307 worldwide accessions, including several regional samples, using a 250K SNP chip. This allowed us to produce a high-resolution description of the global pattern of genetic variation. We applied three complementary selection tests and identified new targets of selection. Further, we characterized the pattern of historical recombination in A. thaliana and observed an enrichment of hotspots in its intergenic regions and repetitive DNA, which is consistent with the pattern that is observed for humans but which is strikingly different from that observed in other plant species. We have made the seeds we used to produce this Regional Mapping (RegMap) panel publicly available. This panel comprises one of the largest genomic mapping resources currently available for global natural isolates of a non-human species.


PLOS Biology | 2010

A Simple Genetic Architecture Underlies Morphological Variation in Dogs

Adam R. Boyko; Pascale Quignon; Lin Li; Jeffrey J. Schoenebeck; Jeremiah D. Degenhardt; Kirk E. Lohmueller; Keyan Zhao; Abra Brisbin; Heidi G. Parker; Bridgett M. vonHoldt; Michele Cargill; Adam Auton; Andrew R. Reynolds; Abdel G. Elkahloun; Marta Castelhano; Dana S. Mosher; Nathan B. Sutter; Gary S. Johnson; John Novembre; Melissa J. Hubisz; Adam Siepel; Robert K. Wayne; Carlos Bustamante; Elaine A. Ostrander

The largest genetic study to date of morphology in domestic dogs identifies genes controlling nearly 100 morphological traits and identifies important trends in phenotypic variation within this species.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-wide patterns of population structure and admixture among Hispanic/Latino populations

Katarzyna Bryc; Christopher Velez; Tatiana M. Karafet; Andres Moreno-Estrada; Andrew R. Reynolds; Adam Auton; Michael F. Hammer; Carlos Bustamante; Harry Ostrer

Hispanic/Latino populations possess a complex genetic structure that reflects recent admixture among and potentially ancient substructure within Native American, European, and West African source populations. Here, we quantify genome-wide patterns of SNP and haplotype variation among 100 individuals with ancestry from Ecuador, Colombia, Puerto Rico, and the Dominican Republic genotyped on the Illumina 610-Quad arrays and 112 Mexicans genotyped on Affymetrix 500K platform. Intersecting these data with previously collected high-density SNP data from 4,305 individuals, we use principal component analysis and clustering methods FRAPPE and STRUCTURE to investigate genome-wide patterns of African, European, and Native American population structure within and among Hispanic/Latino populations. Comparing autosomal, X and Y chromosome, and mtDNA variation, we find evidence of a significant sex bias in admixture proportions consistent with disproportionate contribution of European male and Native American female ancestry to present-day populations. We also find that patterns of linkage-disequilibria in admixed Hispanic/Latino populations are largely affected by the admixture dynamics of the populations, with faster decay of LD in populations of higher African ancestry. Finally, using the locus-specific ancestry inference method LAMP, we reconstruct fine-scale chromosomal patterns of admixture. We document moderate power to differentiate among potential subcontinental source populations within the Native American, European, and African segments of the admixed Hispanic/Latino genomes. Our results suggest future genome-wide association scans in Hispanic/Latino populations may require correction for local genomic ancestry at a subcontinental scale when associating differences in the genome with disease risk, progression, and drug efficacy, as well as for admixture mapping.

Collaboration


Dive into the Adam Auton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew R. Reynolds

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Greally

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge