Abdelkarim Ouerghi
Université Paris-Saclay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdelkarim Ouerghi.
Applied Physics Letters | 2010
Abdelkarim Ouerghi; A. Kahouli; D. Lucot; Marc Portail; L. Travers; J. Gierak; J. Penuelas; P. Jegou; Abhay Shukla; Thierry Chassagne; Marcin Zielinski
Epitaxial graphene films grown on silicon carbide (SiC) substrate by solid state graphitization is of great interest for electronic and optoelectronic applications. In this paper, we explore the properties of epitaxial graphene films on 3C-SiC(111)Si(111) substrate. X-ray photoelectron spectroscopy and scanning tunneling microscopy were extensively used to characterize the quality of the few-layer graphene (FLG) surface. The Raman spectroscopy studies were useful in confirming the graphitic composition and measuring the thickness of the FLG samples.
Nano Letters | 2016
Debora Pierucci; Hugo Henck; José Avila; Adrian Balan; Carl H. Naylor; G. Patriarche; Yannick J. Dappe; Mathieu G. Silly; Fausto Sirotti; A. T. Charlie Johnson; Maria C. Asensio; Abdelkarim Ouerghi
Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential.
Scientific Reports | 2015
E. Pallecchi; Frank Lafont; V. Cavaliere; F. Schopfer; D. Mailly; W. Poirier; Abdelkarim Ouerghi
We investigate the magneto-transport properties of epitaxial graphene single-layer on 4H-SiC(0001), grown by atmospheric pressure graphitization in Ar, followed by H2 intercalation. We directly demonstrate the importance of saturating the Si dangling bonds at the graphene/SiC(0001) interface to achieve high carrier mobility. Upon successful Si dangling bonds elimination, carrier mobility increases from 3 000 cm2V−1s−1 to >11 000 cm2V−1s−1 at 0.3 K. Additionally, graphene electron concentration tends to decrease from a few 1012 cm−2 to less than 1012 cm−2. For a typical large (30 × 280 μm2) Hall bar, we report the observation of the integer quantum Hall states at 0.3 K with well developed transversal resistance plateaus at Landau level filling factors of ν = 2, 6, 10, 14… 42 and Shubnikov de Haas oscillation of the longitudinal resistivity observed from about 1 T. In such a device, the Hall state quantization at ν = 2, at 19 T and 0.3 K, can be very robust: the dissipation in electronic transport can stay very low, with the longitudinal resistivity lower than 5 mΩ, for measurement currents as high as 250 μA. This is very promising in the view of an application in metrology.
ACS Nano | 2012
Emilio Velez-Fort; Claire Mathieu; E. Pallecchi; Marine Pigneur; Mathieu G. Silly; Rachid Belkhou; Massimiliano Marangolo; Abhay Shukla; Fausto Sirotti; Abdelkarim Ouerghi
Nitrogen doping of graphene is of great interest for both fundamental research to explore the effect of dopants on a 2D electrical conductor and applications such as lithium storage, composites, and nanoelectronic devices. Here, we report on the modifications of the electronic properties of epitaxial graphene thanks to the introduction, during the growth, of nitrogen-atom substitution in the carbon honeycomb lattice. High-resolution transmission microscopy and low-energy electron microscopy investigations indicate that the nitrogen-doped graphene is uniform at large scale. The substitution of nitrogen atoms in the graphene planes was confirmed by high-resolution X-ray photoelectron spectroscopy, which reveals several atomic configurations for the nitrogen atoms: graphitic-like, pyridine-like, and pyrrolic-like. Angle-resolved photoemission measurements show that the N-doped graphene exhibits large n-type carrier concentrations of 2.6 × 10(13) cm(-2), about 4 times more than what is found for pristine graphene, grown under similar pressure conditions. Our experiments demonstrate that a small amount of dopants (<1%) can significantly tune the electronic properties of graphene by shifting the Dirac cone about 0.3 eV toward higher binding energies with respect to the π band of pristine graphene, which is a key feature for envisioning applications in nanoelectronics.
Applied Physics Letters | 2010
Abdelkarim Ouerghi; Rachid Belkhou; Massimiliano Marangolo; Mathieu G. Silly; S. El Moussaoui; M. Eddrief; L. Largeau; Marc Portail; Fausto Sirotti
Graphene has emerged as a promising nanoelectronic material in electronic devices applications and studying two-dimensional electron gases with relativistic dispersion near Dirac point. Nonetheless, the control of the preparation conditions for homogeneous large-area graphene layers is difficult. Here, we illustrate evidence for high structural and electronic quality epitaxial graphene on 3C-SiC(111). Morphology and electronic structure of the graphene layers have been analyzed with low energy electron microscopy and angle resolved photoemission spectroscopy. Using scanning tunneling microscopy and scanning transmission electron microscopy, we show that graphene exhibits remarkably continuity of step edges suggesting the possibility of growing large scale graphene layer
ACS Nano | 2012
Abdelkarim Ouerghi; Mathieu G. Silly; Massimiliano Marangolo; Claire Mathieu; M. Eddrief; Matthieu Picher; Fausto Sirotti; Souliman El Moussaoui; Rachid Belkhou
The growth of large and uniform graphene layers remains very challenging to this day due to the close correlation between the electronic and transport properties and the layer morphology. Here, we report the synthesis of uniform large-scale mono- and bilayers of graphene on off-axis 6H-SiC(0001) substrates. The originality of our approach consists of the fine control of the growth mode of the graphene by precise control of the Si sublimation rate. Moreover, we take advantage of the presence of nanofacets on the off-axis substrate to grow a large and uniform graphene with good long-range order. We believe that our approach represents a significant step toward the scalable synthesis of graphene films with high structural qualities and fine thickness control, in order to develop graphene-based electronic devices.
Applied Physics Letters | 2010
A. Michon; S. Vézian; Abdelkarim Ouerghi; Marcin Zielinski; Thierry Chassagne; Marc Portail
We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000–1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.
Scientific Reports | 2016
Debora Pierucci; Hugo Henck; Carl H. Naylor; Haikel Sediri; Emmanuel Lhuillier; Adrian Balan; Julien E. Rault; Yannick J. Dappe; F. Bertran; Patrick Le Fèvre; A. T. Charlie Johnson; Abdelkarim Ouerghi
Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design.
Scientific Reports | 2015
B. Lalmi; J. C. Girard; E. Pallecchi; Mathieu G. Silly; Christophe David; Sylvain Latil; Fausto Sirotti; Abdelkarim Ouerghi
Trilayer graphene is of particular interest to the 2D materials community because of its unique tunable electronic structure. However, to date, there is a lack of fundamental understanding of the properties of epitaxial trilayer graphene on silicon carbide. Here, following successful synthesis of large-area uniform trilayer graphene, atomic force microscopy (AFM) showed that the trilayer graphene on 6H-SiC(0001) was uniform over a large scale. Additionally, distinct defects, identified as flower-shaped domains and isolated wrinkle structures, were observed randomly on the surface using scanning tunneling microscopy and spectroscopy (STM/STS). These carbon nanostructures formed during growth, has different structural and electronic properties when compared with the adjacent flat regions of the graphene. Finally, using low temperature STM/STS at 4K, we found that the isolated wrinkles showed an irreversible rotational motion between two 60° configurations at different densities of states.
ACS Nano | 2015
Debora Pierucci; Haikel Sediri; Mahdi Hajlaoui; J. C. Girard; Thomas Brumme; Matteo Calandra; Emilio Velez-Fort; G. Patriarche; Mathieu G. Silly; Gabriel Ferro; Véronique Soulière; Massimiliano Marangolo; Fausto Sirotti; Francesco Mauri; Abdelkarim Ouerghi
The stacking order of multilayer graphene has a profound influence on its electronic properties. In particular, it has been predicted that a rhombohedral stacking sequence displays a very flat conducting surface state: the longer the sequence, the flatter the band. In such a flat band, the role of electron-electron correlation is enhanced, possibly resulting in high Tc superconductivity, magnetic order, or charge density wave order. Here we demonstrate that rhombohedral multilayers are easily obtained by epitaxial growth on 3C-SiC(111) on a 2° off-axis 6H-SiC(0001). The resulting samples contain rhombohedral sequences of five layers on 70% of the surface. We confirm the presence of the flat band at the Fermi level by scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy, in close agreement with the predictions of density functional theory calculations.