Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel Lhuillier is active.

Publication


Featured researches published by Emmanuel Lhuillier.


Accounts of Chemical Research | 2015

Two-Dimensional Colloidal Metal Chalcogenides Semiconductors: Synthesis, Spectroscopy, and Applications

Emmanuel Lhuillier; Silvia Pedetti; Sandrine Ithurria; Brice Nadal; Hadrien Heuclin; Benoit Dubertret

CONSPECTUS: Semiconductors are at the basis of electronics. Up to now, most devices that contain semiconductors use materials obtained from a top down approach with semiconductors grown by molecular beam epitaxy or chemical vapor deposition. Colloidal semiconductor nanoparticles have been synthesized for more than 30 years now, and their synthesis is becoming mature enough that these nanoparticles have started to be incorporated into devices. An important development that recently took place in the field of colloidal quantum dots is the synthesis of two-dimensional (2D) semiconductor nanoplatelets that appear as free-standing nanosheets. These 2D colloidal systems are the newborn in the family of shaped-controlled nanoparticles that started with spheres, was extended with rods and wires, continued with tetrapods, and now ends with platelets. From a physical point of view, these objects bring 1D-confined particles into the colloidal family. It is a notable addition, since these platelets can have a thickness that is controlled with atomic precision, so that no inhomogeneous broadening is observed. Because they have two large free interfaces, mirror charges play an important role, and the binding energy of the exciton is extremely large. These two effects almost perfectly compensate each other, it results in particles with unique spectroscopic properties such as fast fluorescent lifetimes and extreme color purity (narrow full width at half-maximum of their emission spectra). These nanoplatelets with extremely large confinement but very simple and well-defined chemistry are model systems to check and further develop, notably with the incorporation in the models of the organic/inorganic interface, various theoretical approaches used for colloidal particles. From a chemical point of view, these colloidal particles are a model system to study the role of ligands since they have precisely defined facets. In addition, the synthesis of these highly anisotropic objects triggered new research to understand at a mechanistic level how this strong anisotropy could be generated. Luckily, some of the chemical know-how built with the spherical and rod-shaped particles is being transferred, with some adaptation, to 2D systems, so that 2D core/shell and core/crown heterostructures have recently been introduced. These objects are very interesting because they suggest that multiple quantum wells could be grown in solution. From the application point of view, 2D colloidal nanoplatelets offer interesting perspectives when color purity, charge conductivity, or field tunable absorption are required. In this Account, we review the chemical synthesis, the physical properties, and the applications of colloidal semiconductor nanoplatelets with an emphasis on the zinc-blende nanoplatelets that were developed more specifically in our group.


Journal of the American Chemical Society | 2011

Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection.

Sean Keuleyan; Emmanuel Lhuillier; Philippe Guyot-Sionnest

HgTe colloidal quantum dots are prepared via a simple two-step injection method. Absorption and photodetection with sharp edges, as well as narrow photoluminescence, are tunable across the near and mid-IR between 1.3 and 5 μm.


Chemical Reviews | 2016

Two-Dimensional Colloidal Nanocrystals

Michel Nasilowski; Benoit Mahler; Emmanuel Lhuillier; Sandrine Ithurria; Benoit Dubertret

In this paper, we review recent progress on colloidal growth of 2D nanocrystals. We identify the four main sources of anisotropy which lead to the formation of plate- and sheet-like colloidal nanomaterials. Defect-induced anisotropy is a growth method which relies on the presence of topological defects at the nanoscale to induce 2D shapes objects. Such a method is particularly important in the growth of metallic nano-objects. Another way to induce anisotropy is based on ligand engineering. The availability of some nanocrystal facets can be tuned by selectively covering the surface with ligands of tunable thickness. Cadmium chalcogenides nanoplatelets (NPLs) strongly rely on this method which offers atomic control in the thinner direction, down to a few monolayers. Two-dimensional objects can also be obtained by post or in situ self-assembly of nanocrystals. This growth method differs from the previous ones in the sense that the elementary objects are not molecular precursors and is a common method for lead chalcogenide compounds. Finally, anisotropy may simply rely on the lattice anisotropy itself as it is common for rod-like nanocrystals. Colloidally grown transition metal dichalcogenides (TMDC) in particular result from such process. We also present hybrid syntheses which combine several of the previously described methods and other paths, such as cation exchange, which expand the range of available materials. Finally, we discuss in which sense 2D objects differ from 0D nanocrystals and review some of their applications in optoelectronics, including lasing and photodetection, and biology.


Nano Letters | 2016

Infrared Photodetection Based on Colloidal Quantum-Dot Films with High Mobility and Optical Absorption up to THz

Emmanuel Lhuillier; Marion Scarafagio; Patrick Hease; Brice Nadal; Herve Aubin; Xiang Zhen Xu; Nicolas Lequeux; G. Patriarche; Sandrine Ithurria; Benoit Dubertret

Infrared thermal imaging devices rely on narrow band gap semiconductors grown by physical methods such as molecular beam epitaxy and chemical vapor deposition. These technologies are expensive, and infrared detectors remain limited to defense and scientific applications. Colloidal quantum dots (QDs) offer a low cost alternative to infrared detector by combining inexpensive synthesis and an ease of processing, but their performances are so far limited, in terms of both wavelength and sensitivity. Herein we propose a new generation of colloidal QD-based photodetectors, which demonstrate detectivity improved by 2 orders of magnitude, and optical absorption that can be continuously tuned between 3 and 20 μm. These photodetectors are based on the novel synthesis of n-doped HgSe colloidal QDs whose size can be tuned continuously between 5 and 40 nm, and on their assembly into solid nanocrystal films with mobilities that can reach up to 100 cm(2) V(-1) s(-1). These devices can be operated at room temperature with the same level of performance as the previous generation of devices when operated at liquid nitrogen temperature. HgSe QDs can be synthesized in large scale (>10 g per batch), and we show that HgSe films can be processed to form a large scale array of pixels. Taken together, these results pave the way for the development of the next generation mid- and far-infrared low-cost detectors and camera.


Advanced Materials | 2013

Mid-Infrared HgTe/As2S3 Field Effect Transistors and Photodetectors

Emmanuel Lhuillier; Sean Keuleyan; Pavlo Zolotavin; Philippe Guyot-Sionnest

HgTe colloidal quantum dots (CQD) in an inorganic As(2)S(3) matrix allow 100-fold higher mobility with optimized transport properties compared to HgTe-organic CQD film while remaining intrinsic. The materials electronic properties are measured by field effect transistors as a function of temperature and the responsivity and detectivity of the mid-IR photoconductors are discussed.


Nano Letters | 2014

Electrolyte-Gated Colloidal Nanoplatelets-Based Phototransistor and Its Use for Bicolor Detection

Emmanuel Lhuillier; Adrien Robin; Sandrine Ithurria; Herve Aubin; Benoit Dubertret

Colloidal nanocrystals are appealing candidates for low cost optoelectronic applications because they can combine the advantages of both organic materials, such as their easy processing, and the excellent performance of inorganic systems. Here, we report the use of two-dimensional colloidal nanoplatelets for photodetection. We show that the nanoplatelets photoresponse can be enhanced by two to three orders of magnitude when they are incorporated in an all solid electrolyte-gated phototransistor. We extend this technique to build the first colloidal quantum dot-based bicolor detector with a response switchable between the visible and near-IR.


ACS Nano | 2014

Electrolyte-Gated Field Effect Transistor to Probe the Surface Defects and Morphology in Films of Thick CdSe Colloidal Nanoplatelets

Emmanuel Lhuillier; Silvia Pedetti; Sandrine Ithurria; Hadrien Heuclin; Brice Nadal; Adrien Robin; G. Patriarche; Nicolas Lequeux; Benoit Dubertret

The optical and optoelectronic properties of colloidal quantum dots strongly depend on the passivation of their surface. Surface states are however difficult to quantify using optical spectroscopy and techniques based on back gated field effect transistors are limited in the range of carrier density that can be probed, usually significantly below one charge carrier per particle. Here we show that electrolyte gating can be used to quantitatively analyze the increase of defects in a population of nanoparticles with increasing surface irregularities. We illustrate this method using CdSe nanoplatelets that are grown in their thickness using low temperature layer-by-layer method. Spectroscopic analysis of the samples confirm that the nanoplatelet thickness is controlled, on average, with atomic precision, but structural analysis with transmission electron microscopy shows that the number of surface defects increases with the nanoplatelet thickness. The amount of charge defects is probed quantitatively using electrolyte-gated field effect transistor (EFET). We observe that the threshold voltage of the EFET increases with the NPL thickness, in agreement with the structural analysis. All samples displayed n-type conduction with strong current modulation (subthreshold swing slope of 100 mV/decade and on/off ratio close to 10(7)). We also point out that an efficient electrolyte gating of the film requires a fine control of the nanoparticle film morphology.


Nanotechnology | 2012

Optical properties of HgTe colloidal quantum dots

Emmanuel Lhuillier; Sean Keuleyan; Philippe Guyot-Sionnest

Room temperature photodetection with HgTe colloidal quantum films is reported between 2 and 5 μm for particles of sizes between ~5 and ~12 nm diameter, and photodetection extends to 7 μm at 80 K. The size-tuning of the absorption of HgTe colloidal quantum dots, their optical cross section and the infrared absorption depth of films are measured. The tuning with radius is empirically given by [see formula in text] where R is in nm. The optical cross section of the colloidal dots at 415 nm is approximately proportional to their volume and given by σ(Hg)(415) = 2.6 ± 0.4 10(-17) cm(2)/mercury atom. The size-dependent optical cross section at the band edge ~1.5 10(-15) cm(2) is consistent with the expected oscillator strength of the quantum dots. The absorption depth of HgTe colloidal dot films is short, about 1-2 μm, which is an advantage for thin film devices. These properties agree rather well with the expectation from the k · p model. HgTe colloidal quantum dot thin films show a strong tuning with temperature with a large positive thermal shift between 0.4 and 0.2 meV K(-1), decreasing with decreasing size within the size range studied and this is attributed primarily to electron-phonon effects.


Scientific Reports | 2016

Large area molybdenum disulphide-epitaxial graphene vertical Van der Waals heterostructures

Debora Pierucci; Hugo Henck; Carl H. Naylor; Haikel Sediri; Emmanuel Lhuillier; Adrian Balan; Julien E. Rault; Yannick J. Dappe; F. Bertran; Patrick Le Fèvre; A. T. Charlie Johnson; Abdelkarim Ouerghi

Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design.


Nano Letters | 2015

Nanoplatelets Bridging a Nanotrench: A New Architecture for Photodetectors with Increased Sensitivity

Emmanuel Lhuillier; Jean-Francois Dayen; Daniel O. Thomas; Adrien Robin; Bernard Doudin; Benoit Dubertret

Interparticle charge hopping severely limits the integration of colloidal nanocrystals films for optoelectronic device applications. We propose here to overcome this problem by using high aspect ratio interconnects made of wide electrodes separated by a few tens of namometers, a distance matching the size of a single nanoplatelet. The semiconducting CdSe/CdS nanoplatelet coupling with such electrodes allows an efficient electron-hole pair dissociation despite the large binding energy of the exciton, resulting in optimal photoconductance responsivity. We report the highest responsivity obtained so far for CdSe colloidal material with values reaching kA·W(-1), corresponding to eight decades of enhancement compared to usual micrometer-scaled architectures. In addition, a decrease of 1 order of magnitude of the current noise is observed, revealing the reduced influence of the surface traps on transport. The nanotrench geometry provides top access to ion gel electrolyte gating, allowing for a photoresponsive transistor with 10(4) on/off ratio. A simple analytical model reproduces the device behavior and underlines the key parameters related to its performance.

Collaboration


Dive into the Emmanuel Lhuillier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathieu G. Silly

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrien Robin

PSL Research University

View shared research outputs
Researchain Logo
Decentralizing Knowledge