Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abdelrahim Zoued is active.

Publication


Featured researches published by Abdelrahim Zoued.


Nature | 2015

Biogenesis and structure of a type VI secretion membrane core complex

Eric Durand; Van Son Nguyen; Abdelrahim Zoued; Laureen Logger; Gérard Pehau-Arnaudet; Marie-Stéphanie Aschtgen; Silvia Spinelli; Aline Desmyter; Benjamin Bardiaux; Annick Dujeancourt; Alain Roussel; Christian Cambillau; Eric Cascales; Rémi Fronzes

Bacteria share their ecological niches with other microbes. The bacterial type VI secretion system is one of the key players in microbial competition, as well as being an important virulence determinant during bacterial infections. It assembles a nano-crossbow-like structure in the cytoplasm of the attacker cell that propels an arrow made of a haemolysin co-regulated protein (Hcp) tube and a valine–glycine repeat protein G (VgrG) spike and punctures the prey’s cell wall. The nano-crossbow is stably anchored to the cell envelope of the attacker by a membrane core complex. Here we show that this complex is assembled by the sequential addition of three type VI subunits (Tss)—TssJ, TssM and TssL—and present a structure of the fully assembled complex at 11.6 Å resolution, determined by negative-stain electron microscopy. With overall C5 symmetry, this 1.7-megadalton complex comprises a large base in the cytoplasm. It extends in the periplasm via ten arches to form a double-ring structure containing the carboxy-terminal domain of TssM (TssMct) and TssJ that is anchored in the outer membrane. The crystal structure of the TssMct–TssJ complex coupled to whole-cell accessibility studies suggest that large conformational changes induce transient pore formation in the outer membrane, allowing passage of the attacking Hcp tube/VgrG spike.


Journal of Biological Chemistry | 2013

TssK Is a Trimeric Cytoplasmic Protein Interacting with Components of Both Phage-like and Membrane Anchoring Complexes of the Type VI Secretion System

Abdelrahim Zoued; Eric Durand; Cecilia Bebeacua; Yannick R. Brunet; Badreddine Douzi; Christian Cambillau; Eric Cascales; Laure Journet

Background: The T6SS assembles from 13 proteins that form two sub-assemblies. Results: TssK is a cytoplasmic protein that interacts with Hcp, TssC, TssL, and TssA. Conclusion: The TssK complex is three-arm shaped and links the membrane and phage-like complexes in T6SS. Significance: The structural and functional characterization of TssK leads to a better understanding of T6SS assembly. The Type VI secretion system (T6SS) is a macromolecular machine that mediates bacteria-host or bacteria-bacteria interactions. The T6SS core apparatus assembles from 13 proteins that form two sub-assemblies: a phage-like complex and a trans-envelope complex. The Hcp, VgrG, TssE, and TssB/C subunits are structurally and functionally related to components of the tail of contractile bacteriophages. This phage-like structure is thought to be anchored to the membrane by a trans-envelope complex composed of the TssJ, TssL, and TssM proteins. However, how the two sub-complexes are connected remains unknown. Here we identify TssK, a protein that establishes contacts with the two T6SS sub-complexes through direct interactions with TssL, Hcp, and TssC. TssK is a cytoplasmic protein assembling trimers that display a three-armed shape, as revealed by TEM and SAXS analyses. Fluorescence microscopy experiments further demonstrate the requirement of TssK for sheath assembly. Our results suggest a central role for TssK by linking both complexes during T6SS assembly.


PLOS Genetics | 2015

The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization.

Yannick R. Brunet; Abdelrahim Zoued; Frédéric Boyer; Badreddine Douzi; Eric Cascales

The Type VI secretion system (T6SS) is a widespread weapon dedicated to the delivery of toxin proteins into eukaryotic and prokaryotic cells. The 13 T6SS subunits assemble a cytoplasmic contractile structure anchored to the cell envelope by a membrane-spanning complex. This structure is evolutionarily, structurally and functionally related to the tail of contractile bacteriophages. In bacteriophages, the tail assembles onto a protein complex, referred to as the baseplate, that not only serves as a platform during assembly of the tube and sheath, but also triggers the contraction of the sheath. Although progress has been made in understanding T6SS assembly and function, the composition of the T6SS baseplate remains mostly unknown. Here, we report that six T6SS proteins–TssA, TssE, TssF, TssG, TssK and VgrG–are required for proper assembly of the T6SS tail tube, and a complex between VgrG, TssE,-F and-G could be isolated. In addition, we demonstrate that TssF and TssG share limited sequence homologies with known phage components, and we report the interaction network between these subunits and other baseplate and tail components. In agreement with the baseplate being the assembly platform for the tail, fluorescence microscopy analyses of functional GFP-TssF and TssK-GFP fusion proteins show that these proteins assemble stable and static clusters on which the sheath polymerizes. Finally, we show that recruitment of the baseplate to the apparatus requires initial positioning of the membrane complex and contacts between TssG and the inner membrane TssM protein.


Journal of Biological Chemistry | 2012

Structural Characterization and Oligomerization of the TssL Protein, a Component Shared by Bacterial Type VI and Type IVb Secretion Systems

Eric Durand; Abdelrahim Zoued; Silvia Spinelli; Paul J. H. Watson; Marie-Stéphanie Aschtgen; Laure Journet; Christian Cambillau; Eric Cascales

Background: TssL is a core component of the T6SS and has homologue in the T4bSS. Results: The TssL cytoplasmic domain adopts a globular α-helical domain and forms dimers. Conclusion: Dimer formation involves the trans-membrane segment, but contacts mediated by the cytoplasmic domain are important for TssL function. Significance: The structural and functional characterization of TssL leads to a better understanding of T6SS and T4bSS assembly. The Type VI secretion system (T6SS) is a macromolecular system distributed in Gram-negative bacteria, responsible for the secretion of effector proteins into target cells. The T6SS has a broad versatility as it can target both eukaryotic and prokaryotic cells. It is therefore involved in host pathogenesis or killing neighboring bacterial cells to colonize a new niche. At the architecture level, the T6SS core apparatus is composed of 13 proteins, which assemble in two subcomplexes. One of these subcomplexes, composed of subunits that share structural similarities with bacteriophage tail and baseplate components, is anchored to the cell envelope by the membrane subcomplex. This latter is constituted of at least three proteins, TssL, TssM, and TssJ. The crystal structure of the TssJ outer membrane lipoprotein and its interaction with the inner membrane TssM protein have been recently reported. TssL and TssM share sequence homology and characteristics with two components of the Type IVb secretion system (T4bSS), IcmH/DotU and IcmF, respectively. In this study, we report the crystal structure of the cytoplasmic domain of the TssL inner membrane protein from the enteroaggregative Escherichia coli Sci-1 T6SS. It folds as a hook-like structure composed of two three-helix bundles. Two TssL molecules associate to form a functional complex. Although the TssL trans-membrane segment is the main determinant of self-interaction, contacts between the cytoplasmic domains are required for TssL function. Based on sequence homology and secondary structure prediction, we propose that the TssL structure is the prototype for the members of the TssL and IcmH/DotU families.


MicrobiologyOpen | 2012

The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC

Marie-Stéphanie Aschtgen; Abdelrahim Zoued; Roland Lloubès; Laure Journet; Eric Cascales

Type VI secretion systems (T6SS) are macromolecular complexes present in Gram‐negative bacteria. T6SS are structurally similar to the bacteriophage cell‐puncturing device and have been shown to mediate bacteria–host or bacteria–bacteria interactions. T6SS assemble from 13 to 20 proteins. In enteroaggregative Escherichia coli (EAEC), one of the subassemblies is composed of four proteins that form a trans‐envelope complex: the TssJ outer membrane lipoprotein, the peptidoglycan‐anchored inner membrane TagL protein, and two putative inner membrane proteins, TssL and TssM. In this study, we characterized the TssL protein of the EAEC Sci‐1 T6SS in terms of localization, topology, and function. TssL is a critical component of the T6SS, anchored to the inner membrane through a single transmembrane segment located at the extreme C‐terminus of the protein. We further show that this transmembrane segment is essential for the function of the protein and its proper insertion in the inner membrane is dependent upon YidC and modulated by the Hsp70 homologue DnaK.


Nature | 2016

Priming and polymerization of a bacterial contractile tail structure

Abdelrahim Zoued; Eric Durand; Yannick R. Brunet; Silvia Spinelli; Badreddine Douzi; Mathilde Guzzo; Nicolas Flaugnatti; Pierre Legrand; Laure Journet; Rémi Fronzes; Tâm Mignot; Christian Cambillau; Eric Cascales

Contractile tails are composed of an inner tube wrapped by an outer sheath assembled in an extended, metastable conformation that stores mechanical energy necessary for its contraction. Contraction is used to propel the rigid inner tube towards target cells for DNA or toxin delivery. Although recent studies have revealed the structure of the contractile sheath of the type VI secretion system, the mechanisms by which its polymerization is controlled and coordinated with the assembly of the inner tube remain unknown. Here we show that the starfish-like TssA dodecameric complex interacts with tube and sheath components. Fluorescence microscopy experiments in enteroaggregative Escherichia coli reveal that TssA binds first to the type VI secretion system membrane core complex and then initiates tail polymerization. TssA remains at the tip of the growing structure and incorporates new tube and sheath blocks. On the basis of these results, we propose that TssA primes and coordinates tail tube and sheath biogenesis.


Journal of Molecular Biology | 2016

Structure-Function Analysis of the TssL Cytoplasmic Domain Reveals a New Interaction between the Type VI Secretion Baseplate and Membrane Complexes

Abdelrahim Zoued; Chloé J. Cassaro; Eric Durand; Badreddine Douzi; Alexandre P. España; Christian Cambillau; Laure Journet; Eric Cascales

The type VI secretion system (T6SS) is a multiprotein complex that delivers toxin effectors in both prokaryotic and eukaryotic cells. It is constituted of a long cytoplasmic structure-the tail-made of stacked Hcp hexamers and wrapped by a contractile sheath. Contraction of the sheath propels the inner tube capped by the VgrG spike protein toward the target cell. This tubular structure is built onto an assembly platform-the baseplate-that is composed of the TssEFGK-VgrG subunits. During the assembly process, the baseplate is recruited to a trans-envelope complex comprising the TssJ outer membrane lipoprotein and the TssL and TssM inner membrane proteins. This membrane complex serves as a docking station for the baseplate/tail and as a channel for the passage of the inner tube during sheath contraction. The baseplate is recruited to the membrane complex through multiple contacts including interactions of TssG and TssK with the cytoplasmic loop of TssM and of TssK with the cytoplasmic domain of TssL, TssLCyto. Here, we show that TssLCyto interacts also with the TssE baseplate subunit. Based on the available TssLCyto structures, we targeted conserved regions and specific features of TssLCyto in enteroaggregative Escherichia coli. By using bacterial two-hybrid analysis and co-immunoprecipitation, we further show that the disordered L3-L4 loop is necessary to interact with TssK and that the L6-L7 loop mediates the interaction with TssE, whereas the TssM cytoplasmic loop binds the conserved groove of TssLCyto. Finally, competition assays demonstrated that these interactions are physiologically important for T6SS function.


Nature microbiology | 2017

Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex

Van Son Nguyen; Laureen Logger; Silvia Spinelli; Pierre Legrand; Thi Thanh Huyen Pham; Thi Trang Nhung Trinh; Yassine Cherrak; Abdelrahim Zoued; Aline Desmyter; Eric Durand; Alain Roussel; Christine Kellenberger; Eric Cascales; Christian Cambillau

The type VI secretion system (T6SS) is a multiprotein machine widespread in Gram-negative bacteria that delivers toxins into both eukaryotic and prokaryotic cells. The mechanism of action of the T6SS is comparable to that of contractile myophages. The T6SS builds a tail-like structure made of an inner tube wrapped by a sheath, assembled under an extended conformation. Contraction of the sheath propels the inner tube towards the target cell. The T6SS tail is assembled on a platform—the baseplate—which is functionally similar to bacteriophage baseplates. In addition, the baseplate docks the tail to a trans-envelope membrane complex that orients the tail towards the target. Here, we report the crystal structure of TssK, a central component of the T6SS baseplate. We show that TssK is composed of three domains, and establish the contribution of each domain to the interaction with TssK partners. Importantly, this study reveals that the N-terminal domain of TssK is structurally homologous to the shoulder domain of phage receptor-binding proteins, and the C-terminal domain binds the membrane complex. We propose that TssK has conserved the domain of attachment to the virion particle but has evolved the reception domain to use the T6SS membrane complex as receptor.


Journal of Biological Chemistry | 2017

Characterization of the Porphyromonas gingivalis Type IX Secretion Trans-Envelope PorKLMNP Core Complex.

Maxence Vincent; Mickaël J. Canestrari; Philippe Leone; Julien Stathopoulos; Bérengère Ize; Abdelrahim Zoued; Christian Cambillau; Christine Kellenberger; Alain Roussel; Eric Cascales

The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis. Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts.


BioEssays | 2017

TssA: The cap protein of the Type VI secretion system tail

Abdelrahim Zoued; Eric Durand; Yoann G. Santin; Laure Journet; Alain Roussel; Christian Cambillau; Eric Cascales

The Type VI secretion system (T6SS) is a multiprotein and mosaic apparatus that delivers protein effectors into prokaryotic or eukaryotic cells. Recent data on the enteroaggregative Escherichia coli (EAEC) T6SS have provided evidence that the TssA protein is a key component during T6SS biogenesis. The T6SS comprises a trans‐envelope complex that docks the baseplate, a cytoplasmic complex that represents the assembly platform for the tail. The T6SS tail is structurally, evolutionarily and functionally similar to the contractile tails of bacteriophages. We have shown that TssA docks to the membrane complex, recruits the baseplate complex and initiates and coordinates the polymerization of the inner tube with that of the sheath. Here, we review these recent findings, discuss the variations within TssA‐like proteins, speculate on the role of EAEC TssA in T6SS biogenesis and propose future research perspectives.

Collaboration


Dive into the Abdelrahim Zoued's collaboration.

Top Co-Authors

Avatar

Eric Cascales

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Laure Journet

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Cambillau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Eric Durand

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christian Cambillau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Laureen Logger

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Spinelli

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge