Marie-Stéphanie Aschtgen
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Stéphanie Aschtgen.
Journal of Bacteriology | 2008
Marie-Stéphanie Aschtgen; Christophe Bernard; Sophie de Bentzmann; Roland Lloubès; Eric Cascales
Enteroaggregative Escherichia coli (EAEC) is a pathogen implicated in several infant diarrhea or diarrheal outbreaks in areas of endemicity. Although multiple genes involved in EAEC pathogenesis have been identified, the overall mechanism of virulence is not well understood. Recently, a novel secretion system, called type VI secretion (T6S) system (T6SS), has been identified in EAEC and most animal or plant gram-negative pathogens. T6SSs are multicomponent cell envelope machines responsible for the secretion of at least two putative substrates, Hcp and VgrG. In EAEC, two copies of T6S gene clusters, called sci-1 and sci-2, are present on the pheU pathogenicity island. In this study, we focused our work on the sci-1 gene cluster. The Sci-1 apparatus is probably composed of all, or a subset of, the 21 gene products encoded on the cluster. Among these subunits, some are shared by all T6SSs identified to date, including a ClpV-type AAA(+) ATPase (SciG) and an IcmF (SciS) and an IcmH (SciP) homologue, as well as a putative lipoprotein (SciN). In this study, we demonstrate that sciN is a critical gene necessary for T6S-dependent secretion of the Hcp-like SciD protein and for biofilm formation. We further show that SciN is a lipoprotein, as shown by the inhibition of its processing by globomycin and in vivo labeling with [(3)H]palmitic acid. SciN is tethered to the outer membrane and exposed in the periplasm. Sequestration of SciN at the inner membrane by targeting the +2 residue responsible for lipoprotein localization (Gly2Asp) fails to complement an sciN mutant for SciD secretion and biofilm formation. Together, these results support a model in which SciN is an outer membrane lipoprotein exposed in the periplasm and essential for the Sci-1 apparatus function.
Molecular Microbiology | 2010
Marie-Stéphanie Aschtgen; Marthe Gavioli; Andréa Dessen; Roland Lloubès; Eric Cascales
Type VI secretion systems (T6SS) are multi‐component machines encoded within the genomes of most Gram‐negative bacteria that associate with plant, animal and/or human cells, and therefore are considered as potential virulence factors. We recently launched a study on the Sci‐1 T6SS of enteroaggregative Escherichia coli (EAEC). The Sci‐1 T6SS is composed of all or a subset of the 21 gene products encoded within the cluster, 13 of which are shared by all T6SS identified so far. In the present work, we focussed our attention on the SciZ protein. We first showed that SciZ is required for the release of the Hcp protein in the culture supernatant and for efficient biofilm formation, demonstrating that SciZ is necessary for EAEC T6SS function. Indeed, SciZ forms a complex with SciP, SciS and SciN, three core components of the transport apparatus. Fractionation and topology studies showed that SciZ is a polytopic inner membrane protein with three trans‐membrane segments. Computer analyses identified a motif shared by peptidoglycan binding proteins of the OmpA family in the SciZ periplasmic domain. Using in vivo and in vitro binding assays, we showed that this motif anchors the SciZ protein to the cell wall and is required for T6SS function.
Nature | 2015
Eric Durand; Van Son Nguyen; Abdelrahim Zoued; Laureen Logger; Gérard Pehau-Arnaudet; Marie-Stéphanie Aschtgen; Silvia Spinelli; Aline Desmyter; Benjamin Bardiaux; Annick Dujeancourt; Alain Roussel; Christian Cambillau; Eric Cascales; Rémi Fronzes
Bacteria share their ecological niches with other microbes. The bacterial type VI secretion system is one of the key players in microbial competition, as well as being an important virulence determinant during bacterial infections. It assembles a nano-crossbow-like structure in the cytoplasm of the attacker cell that propels an arrow made of a haemolysin co-regulated protein (Hcp) tube and a valine–glycine repeat protein G (VgrG) spike and punctures the prey’s cell wall. The nano-crossbow is stably anchored to the cell envelope of the attacker by a membrane core complex. Here we show that this complex is assembled by the sequential addition of three type VI subunits (Tss)—TssJ, TssM and TssL—and present a structure of the fully assembled complex at 11.6 Å resolution, determined by negative-stain electron microscopy. With overall C5 symmetry, this 1.7-megadalton complex comprises a large base in the cytoplasm. It extends in the periplasm via ten arches to form a double-ring structure containing the carboxy-terminal domain of TssM (TssMct) and TssJ that is anchored in the outer membrane. The crystal structure of the TssMct–TssJ complex coupled to whole-cell accessibility studies suggest that large conformational changes induce transient pore formation in the outer membrane, allowing passage of the attacking Hcp tube/VgrG spike.
PLOS Pathogens | 2011
Catarina Felisberto-Rodrigues; Eric Durand; Marie-Stéphanie Aschtgen; Stéphanie Blangy; Miguel Ortiz-Lombardía; Badreddine Douzi; Christian Cambillau; Eric Cascales
Type VI secretion systems (T6SS) are trans-envelope machines dedicated to the secretion of virulence factors into eukaryotic or prokaryotic cells, therefore required for pathogenesis and/or for competition towards neighboring bacteria. The T6SS apparatus resembles the injection device of bacteriophage T4, and is anchored to the cell envelope through a membrane complex. This membrane complex is composed of the TssL, TssM and TagL inner membrane anchored proteins and of the TssJ outer membrane lipoprotein. Here, we report the crystal structure of the enteroaggregative Escherichia coli Sci1 TssJ lipoprotein, a two four-stranded β-sheets protein that exhibits a transthyretin fold with an additional α-helical domain and a protruding loop. We showed that TssJ contacts TssM through this loop since a loop depleted mutant failed to interact with TssM in vitro or in vivo. Biophysical analysis of TssM and TssJ-TssM interaction suggest a structural model of the membrane-anchored outer shell of T6SS. Collectively, our results provide an improved understanding of T6SS assembly and encourage structure-aided drug design of novel antimicrobials targeting T6SS.
Journal of Biological Chemistry | 2012
Eric Durand; Abdelrahim Zoued; Silvia Spinelli; Paul J. H. Watson; Marie-Stéphanie Aschtgen; Laure Journet; Christian Cambillau; Eric Cascales
Background: TssL is a core component of the T6SS and has homologue in the T4bSS. Results: The TssL cytoplasmic domain adopts a globular α-helical domain and forms dimers. Conclusion: Dimer formation involves the trans-membrane segment, but contacts mediated by the cytoplasmic domain are important for TssL function. Significance: The structural and functional characterization of TssL leads to a better understanding of T6SS and T4bSS assembly. The Type VI secretion system (T6SS) is a macromolecular system distributed in Gram-negative bacteria, responsible for the secretion of effector proteins into target cells. The T6SS has a broad versatility as it can target both eukaryotic and prokaryotic cells. It is therefore involved in host pathogenesis or killing neighboring bacterial cells to colonize a new niche. At the architecture level, the T6SS core apparatus is composed of 13 proteins, which assemble in two subcomplexes. One of these subcomplexes, composed of subunits that share structural similarities with bacteriophage tail and baseplate components, is anchored to the cell envelope by the membrane subcomplex. This latter is constituted of at least three proteins, TssL, TssM, and TssJ. The crystal structure of the TssJ outer membrane lipoprotein and its interaction with the inner membrane TssM protein have been recently reported. TssL and TssM share sequence homology and characteristics with two components of the Type IVb secretion system (T4bSS), IcmH/DotU and IcmF, respectively. In this study, we report the crystal structure of the cytoplasmic domain of the TssL inner membrane protein from the enteroaggregative Escherichia coli Sci-1 T6SS. It folds as a hook-like structure composed of two three-helix bundles. Two TssL molecules associate to form a functional complex. Although the TssL trans-membrane segment is the main determinant of self-interaction, contacts between the cytoplasmic domains are required for TssL function. Based on sequence homology and secondary structure prediction, we propose that the TssL structure is the prototype for the members of the TssL and IcmH/DotU families.
MicrobiologyOpen | 2012
Marie-Stéphanie Aschtgen; Abdelrahim Zoued; Roland Lloubès; Laure Journet; Eric Cascales
Type VI secretion systems (T6SS) are macromolecular complexes present in Gram‐negative bacteria. T6SS are structurally similar to the bacteriophage cell‐puncturing device and have been shown to mediate bacteria–host or bacteria–bacteria interactions. T6SS assemble from 13 to 20 proteins. In enteroaggregative Escherichia coli (EAEC), one of the subassemblies is composed of four proteins that form a trans‐envelope complex: the TssJ outer membrane lipoprotein, the peptidoglycan‐anchored inner membrane TagL protein, and two putative inner membrane proteins, TssL and TssM. In this study, we characterized the TssL protein of the EAEC Sci‐1 T6SS in terms of localization, topology, and function. TssL is a critical component of the T6SS, anchored to the inner membrane through a single transmembrane segment located at the extreme C‐terminus of the protein. We further show that this transmembrane segment is essential for the function of the protein and its proper insertion in the inner membrane is dependent upon YidC and modulated by the Hsp70 homologue DnaK.
Molecular Microbiology | 2016
Nicolas Flaugnatti; Thi Thu Hang Le; Stéphane Canaan; Marie-Stéphanie Aschtgen; Van Son Nguyen; Stéphanie Blangy; Christine Kellenberger; Alain Roussel; Christian Cambillau; Eric Cascales; Laure Journet
The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath‐like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero‐aggregative Escherichia coli Sci‐1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self‐protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C‐terminal extension domain of VgrG1, including a transthyretin‐like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C‐terminus of VgrG proteins.
Molecular Microbiology | 2016
Nicolas Flaugnatti; Thi Thu Hang Le; Stéphane Canaan; Marie-Stéphanie Aschtgen; Van Son Nguyen; Stéphanie Blangy; Christine Kellenberger; Alain Roussel; Christian Cambillau; Eric Cascales; Laure Journet
The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath‐like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero‐aggregative Escherichia coli Sci‐1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self‐protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C‐terminal extension domain of VgrG1, including a transthyretin‐like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C‐terminus of VgrG proteins.
Journal of Molecular Biology | 2016
Laureen Logger; Marie-Stéphanie Aschtgen; Marie Guérin; Eric Cascales; Eric Durand
The type VI secretion system (T6SS) is a multiprotein complex that catalyses toxin secretion through the bacterial cell envelope of various Gram-negative bacteria including important human pathogens. This machine uses a bacteriophage-like contractile tail to puncture the prey cell and inject harmful toxins. The T6SS tail comprises an inner tube capped by the cell-puncturing spike and wrapped by the contractile sheath. This structure is built on an assembly platform, the baseplate, which is anchored to the bacterial cell envelope by the TssJLM membrane complex (MC). This MC serves as both a tail docking station and a channel for the passage of the inner tube. The TssM transmembrane protein is a key component of the MC as it connects the inner and outer membranes. In this study, we define the TssM topology, highlighting a large but poorly studied 35-kDa cytoplasmic domain, TssMCyto, located between two transmembrane segments. Protein-protein interaction assays further show that TssMCyto oligomerises and makes contacts with several baseplate components. Using computer predictions, we delineate two subdomains in TssMCyto, including a nucleotide triphosphatase (NTPase) domain, followed by a 110-aa extension. Finally, site-directed mutagenesis coupled to functional assays reveals the contribution of these subdomains and conserved motifs to the interaction with T6SS partners and to the function of the secretion apparatus.
Biochimica et Biophysica Acta | 2014
Abdelrahim Zoued; Yannick R. Brunet; Eric Durand; Marie-Stéphanie Aschtgen; Laureen Logger; Badreddine Douzi; Laure Journet; Christian Cambillau; Eric Cascales