Abdulaziz N. Alagaili
King Saud University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdulaziz N. Alagaili.
Mbio | 2014
Abdulaziz N. Alagaili; Thomas Briese; Nischay Mishra; Vishal Kapoor; Stephen Sameroff; Peter D. Burbelo; E. de Wit; Vincent J. Munster; Lisa E. Hensley; Iyad S. Zalmout; Amit Kapoor; Jonathan H. Epstein; William B. Karesh; Peter Daszak; Osama B. Mohammed; W. I. Lipkin
ABSTRACT The Middle East respiratory syndrome (MERS) is proposed to be a zoonotic disease; however, the reservoir and mechanism for transmission of the causative agent, the MERS coronavirus, are unknown. Dromedary camels have been implicated through reports that some victims have been exposed to camels, camels in areas where the disease has emerged have antibodies to the virus, and viral sequences have been recovered from camels in association with outbreaks of the disease among humans. Nonetheless, whether camels mediate transmission to humans is unresolved. Here we provide evidence from a geographic and temporal survey of camels in the Kingdom of Saudi Arabia that MERS coronaviruses have been circulating in camels since at least 1992, are distributed countrywide, and can be phylogenetically classified into clades that correlate with outbreaks of the disease among humans. We found no evidence of infection in domestic sheep or domestic goats. IMPORTANCE This study was undertaken to determine the historical and current prevalence of Middle East respiratory syndrome (MERS) coronavirus infection in dromedary camels and other livestock in the Kingdom of Saudi Arabia, where the index case and the majority of cases of MERS have been reported. This study was undertaken to determine the historical and current prevalence of Middle East respiratory syndrome (MERS) coronavirus infection in dromedary camels and other livestock in the Kingdom of Saudi Arabia, where the index case and the majority of cases of MERS have been reported.
Mbio | 2014
Thomas Briese; Nischay Mishra; Komal Jain; Iyad S. Zalmout; Omar J. Jabado; William B. Karesh; Peter Daszak; Osama B. Mohammed; Abdulaziz N. Alagaili; W. Ian Lipkin
ABSTRACT Complete Middle East respiratory syndrome coronavirus (MERS-CoV) genome sequences were obtained from nasal swabs of dromedary camels sampled in the Kingdom of Saudi Arabia through direct analysis of nucleic acid extracts or following virus isolation in cell culture. Consensus dromedary MERS-CoV genome sequences were the same with either template source and identical to published human MERS-CoV sequences. However, in contrast to individual human cases, where only clonal genomic sequences are reported, detailed population analyses revealed the presence of more than one genomic variant in individual dromedaries. If humans are truly infected only with clonal virus populations, we must entertain a model for interspecies transmission of MERS-CoV wherein only specific genotypes are capable of passing bottleneck selection. IMPORTANCE In most cases of Middle East respiratory syndrome (MERS), the route for human infection with the causative agent, MERS coronavirus (MERS-CoV), is unknown. Antibodies to and viral nucleic acids of MERS-CoV have been found in dromedaries, suggesting the possibility that they may serve as a reservoir or vector for human infection. However, neither whole viral genomic sequence nor infectious virus has been isolated from dromedaries or other animals in Saudi Arabia. Here, we report recovery of MERS-CoV from nasal swabs of dromedaries, demonstrate that MERS-CoV whole-genome consensus sequences from dromedaries and humans are indistinguishable, and show that dromedaries can be simultaneously infected with more than one MERS-CoV. Together with data indicating widespread dromedary infection in the Kingdom of Saudi Arabia, these findings support the plausibility of a role for dromedaries in human infection. In most cases of Middle East respiratory syndrome (MERS), the route for human infection with the causative agent, MERS coronavirus (MERS-CoV), is unknown. Antibodies to and viral nucleic acids of MERS-CoV have been found in dromedaries, suggesting the possibility that they may serve as a reservoir or vector for human infection. However, neither whole viral genomic sequence nor infectious virus has been isolated from dromedaries or other animals in Saudi Arabia. Here, we report recovery of MERS-CoV from nasal swabs of dromedaries, demonstrate that MERS-CoV whole-genome consensus sequences from dromedaries and humans are indistinguishable, and show that dromedaries can be simultaneously infected with more than one MERS-CoV. Together with data indicating widespread dromedary infection in the Kingdom of Saudi Arabia, these findings support the plausibility of a role for dromedaries in human infection.
Proceedings of the Royal Society B: Biological Sciences | 2015
Malgorzata Pilot; Tadeusz Malewski; Andre E. Moura; Tomasz Grzybowski; Kamil Oleński; Anna Ruść; Stanisław Kamiński; Fernanda Ruiz Fadel; Daniel Mills; Abdulaziz N. Alagaili; Osama B. Mohammed; Grzegorz Kłys; Innokentiy M. Okhlopkov; Ewa Suchecka; Wiesław Bogdanowicz
Although a large part of the global domestic dog population is free-ranging and free-breeding, knowledge of genetic diversity in these free-breeding dogs (FBDs) and their ancestry relations to pure-breed dogs is limited, and the indigenous status of FBDs in Asia is still uncertain. We analyse genome-wide SNP variability of FBDs across Eurasia, and show that they display weak genetic structure and are genetically distinct from pure-breed dogs rather than constituting an admixture of breeds. Our results suggest that modern European breeds originated locally from European FBDs. East Asian and Arctic breeds show closest affinity to East Asian FBDs, and they both represent the earliest branching lineages in the phylogeny of extant Eurasian dogs. Our biogeographic reconstruction of ancestral distributions indicates a gradual westward expansion of East Asian indigenous dogs to the Middle East and Europe through Central and West Asia, providing evidence for a major expansion that shaped the patterns of genetic differentiation in modern dogs. This expansion was probably secondary and could have led to the replacement of earlier resident populations in Western Eurasia. This could explain why earlier studies based on modern DNA suggest East Asia as the region of dog origin, while ancient DNA and archaeological data point to Western Eurasia.
Movement ecology | 2017
Hannah J. Williams; Mark D. Holton; Emily L. C. Shepard; Nicola Largey; Brad Norman; Peter G. Ryan; Olivier Duriez; Michael Scantlebury; Flavio Quintana; Elizabeth A. Magowan; Nikki J. Marks; Abdulaziz N. Alagaili; Nigel C. Bennett; Rory P. Wilson
BackgroundAccelerometers are powerful sensors in many bio-logging devices, and are increasingly allowing researchers to investigate the performance, behaviour, energy expenditure and even state, of free-living animals. Another sensor commonly used in animal-attached loggers is the magnetometer, which has been primarily used in dead-reckoning or inertial measurement tags, but little outside that. We examine the potential of magnetometers for helping elucidate the behaviour of animals in a manner analogous to, but very different from, accelerometers. The particular responses of magnetometers to movement means that there are instances when they can resolve behaviours that are not easily perceived using accelerometers.MethodsWe calibrated the tri-axial magnetometer to rotations in each axis of movement and constructed 3-dimensional plots to inspect these stylised movements. Using the tri-axial data of Daily Diary tags, attached to individuals of number of animal species as they perform different behaviours, we used these 3-d plots to develop a framework with which tri-axial magnetometry data can be examined and introduce metrics that should help quantify movement and behaviour.ResultsTri-axial magnetometry data reveal patterns in movement at various scales of rotation that are not always evident in acceleration data. Some of these patterns may be obscure until visualised in 3D space as tri-axial spherical plots (m-spheres). A tag-fitted animal that rotates in heading while adopting a constant body attitude produces a ring of data around the pole of the m-sphere that we define as its Normal Operational Plane (NOP). Data that do not lie on this ring are created by postural rotations of the animal as it pitches and/or rolls. Consequently, stereotyped behaviours appear as specific trajectories on the sphere (m-prints), reflecting conserved sequences of postural changes (and/or angular velocities), which result from the precise relationship between body attitude and heading. This novel approach shows promise for helping researchers to identify and quantify behaviours in terms of animal body posture, including heading.ConclusionMagnetometer-based techniques and metrics can enhance our capacity to identify and examine animal behaviour, either as a technique used alone, or one that is complementary to tri-axial accelerometry.
Veterinary Microbiology | 2015
Armanda D.S. Bastos; Osama B. Mohammed; Nigel C. Bennett; Charalambos Petevinos; Abdulaziz N. Alagaili
Serological surveys have confirmed Anaplasma marginale and Anaplasma phagocytophilum infections in dromedary camels, but molecular surveys and genetic characterisation of camel-associated Anaplasma species are lacking. In this study, we detected tick-borne Anaplasmataceae in 30 of 100 (30%) healthy dromedary camels screened using a combined 16S rRNA-groEL PCR-sequencing approach. Nucleotide sequencing confirmed Anaplasmataceae genome presence in 28 of the 33 16S rRNA PCR-positive samples, with two additional positive samples, for which 16S rRNA sequence data were ambiguous, being identified by groEL gene characterisation. Phylogenetic analyses of a 1289 nt segment of the 16S rRNA gene confirmed the presence of a unique Ehrlichia lineage and a discrete Anaplasma lineage, comprising three variants, occurring at an overall prevalence of 4% and 26%, respectively. Genetic characterisation of an aligned 559 nt groEL gene region revealed the camel-associated Anaplasma and Ehrlichia lineages to be novel and most closely related to Anaplasma platys and Ehrlichia canis. Based on the confirmed monophyly, minimum pairwise genetic distances between each novel lineage and its closest sister taxon, and the inability to isolate the bacteria, we propose that Candidatus status be assigned to each. This first genetic characterisation of Anaplasmataceae from naturally infected, asymptomatic dromedary camels in Saudi Arabia confirms the presence of two novel lineages that are phylogenetically linked to two pathogenic canid species of increasing zoonotic concern.
Journal of Biological Rhythms | 2016
Joshua G. Davimes; Abdulaziz N. Alagaili; Nadine Gravett; Mads F. Bertelsen; Osama B. Mohammed; Khairy Ismail; Nigel C. Bennett; Paul R. Manger
The Arabian oryx inhabits an environment where summer ambient temperatures can exceed 40 °C for extended periods of time. While the oryx uses a suite of adaptations that aid survival, the effects of this extreme environment on inactivity are unknown. To determine how the oryx manages inactivity seasonally, we measured the daily rhythm of body temperature and used fine-grain actigraphy, in 10 animals, to reveal when the animals were inactive in relation to ambient temperature and photoperiod. We demonstrate that during the cooler winter months, the oryx was inactive during the cooler parts of the 24-h day (predawn hours), showing a nighttime (nocturnal) inactivity pattern. In contrast, in the warmer summer months, the oryx displayed a bimodal inactivity pattern, with major inactivity bouts (those greater than 1 h) occurring equally during both the coolest part of the night (predawn hours) and the warmest part of the day (afternoon hours). Of note, the timing of the daily rhythm of body temperature did not vary seasonally, although the amplitude did change, leading to a seasonal alteration in the phase relationship between inactivity and the body temperature rhythm. Because during periods of inactivity the oryx were presumably asleep for much of the time, we speculate that the daytime shift in inactivity may allow the oryx to take advantage of the thermoregulatory physiology of sleep, which likely occurs when the animal is inactive for more than 1 h, to mitigate environmentally induced increases in body temperature.
Journal of Chemical Neuroanatomy | 2016
Tanya Calvey; Nina Patzke; Nigel C. Bennett; Kaswera-Kyamakya Consolate; Emmanuel Gilissen; Abdulaziz N. Alagaili; Osama B. Mohammed; John D. Pettigrew; Paul R. Manger
The organization of the cholinergic, catecholaminergic, and serotonergic neurons in the brains of five species of insectivores and the orexinergic (hypocretinergic) system in four insectivore species is presented. We aimed to investigate the nuclear complement of these neural systems in comparison to those of other mammalian species. Brains of insectivores were coronally sectioned and immunohistochemically stained with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. The majority of nuclei were similar among the species investigated and to mammals in general, but certain differences in the nuclear complement highlighted potential phylogenetic interrelationships. In the cholinergic system, the three shrew species lacked parabigeminal and Edinger-Westphal nuclei. In addition, the appearance of the laterodorsal tegmental nucleus in all insectivores revealed a mediodorsal arch. All three of these features are the same as those present in microchiropterans. The catecholaminergic system of the three shrew species lacked the A4 and A15d nuclei, as well as having an incipient A9v nucleus, again features found in microchiropteran brains. The serotonergic and orexinergic systems of the insectivores are similar to those seen across most eutherian mammals. The analysis of similarities and differences across mammalian species indicates a potential phylogenetic relationship between the Soricidae (shrews) and the microchiropterans.
Neuroscience | 2014
Richard Chawana; Abdulaziz N. Alagaili; Nina Patzke; Muhammad A. Spocter; Osama B. Mohammed; Consolate Kaswera; Emmanuel Gilissen; Nigel C. Bennett; Amadi O. Ihunwo; Paul R. Manger
A previous study investigating potential adult hippocampal neurogenesis in microchiropteran bats failed to reveal a strong presence of this neural trait. As microchiropterans have a high field metabolic rate and a small body mass, it is possible that capture/handling stress may lead to a decrease in the detectable presence of adult hippocampal neurogenesis. Here we looked for evidence of adult hippocampal neurogenesis using immunohistochemical techniques for the endogenous marker doublecortin (DCX) in 10 species of microchiropterans euthanized and perfusion fixed at specific time points following capture. Our results reveal that when euthanized and perfused within 15 min of capture, abundant putative adult hippocampal neurogenesis could be detected using DCX immunohistochemistry. Between 15 and 30 min post-capture, the detectable levels of DCX dropped dramatically and after 30 min post-capture, immunohistochemistry for DCX could not reveal any significant evidence of putative adult hippocampal neurogenesis. Thus, as with all other mammals studied to date apart from cetaceans, bats, including both microchiropterans and megachiropterans, appear to exhibit substantial levels of adult hippocampal neurogenesis. The present study underscores the concept that, as with laboratory experiments, studies conducted on wild-caught animals need to be cognizant of the fact that acute stress (capture/handling) may induce major changes in the appearance of specific neural traits.
International Journal of Infectious Diseases | 2016
Alimuddin Zumla; Osman Dar; Richard Kock; Matthew Muturi; Francine Ntoumi; Pontiano Kaleebu; Macete Eusebio; Sayoki Mfinanga; Matthew Bates; Peter Mwaba; Rashid Ansumana; Mishal S Khan; Abdulaziz N. Alagaili; Matt Cotten; Esam I. Azhar; Markus Maeurer; Giuseppe Ippolito; Eskild Petersen
Summary The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a ‘One Health’ approach to control such zoonotic pathogens with epidemic potential.
Journal of Chemical Neuroanatomy | 2015
Leigh-Anne Dell; Muhammad A. Spocter; Nina Patzke; Karl Æ. Karlson; Abdulaziz N. Alagaili; Nigel C. Bennett; Osama B. Muhammed; Mads F. Bertelsen; Jerome M. Siegel; Paul R. Manger
The species of the cetacean and artiodactyl suborders, which constitute the order Cetartiodactyla, exhibit very different sleep phenomenology, with artiodactyls showing typical bihemispheric slow wave and REM sleep, while cetaceans show unihemispheric slow wave sleep and appear to lack REM sleep. The aim of this study was to determine whether cetaceans and artiodactyls have differently organized orexinergic arousal systems by examining the density of orexinergic innervation to the cerebral cortex, as this projection will be involved in various aspects of cortical arousal. This study provides a comparison of orexinergic bouton density in the cerebral cortex of twelve Cetartiodactyla species (ten artiodactyls and two cetaceans) by means of immunohistochemical staining and stereological analysis. It was found that the morphology of the axonal projections of the orexinergic system to the cerebral cortex was similar across all species, as the presence, size and proportion of large and small orexinergic boutons were similar. Despite this, orexinergic bouton density was lower in the cerebral cortex of the cetaceans studied compared to the artiodactyls studied, even when corrected for brain mass, neuron density, glial density and glial:neuron ratio. Results from correlational and principal component analyses indicate that glial density is a major determinant of the observed differences between artiodactyl and cetacean cortical orexinergic bouton density.