Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abdullah Kumral is active.

Publication


Featured researches published by Abdullah Kumral.


Behavioural Brain Research | 2004

Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats

Abdullah Kumral; Nazan Uysal; Kazim Tugyan; Ataç Sönmez; Osman Yilmaz; Necati Gökmen; Muge Kiray; Sermin Genc; Nuray Duman; Tolga Koroglu; Hasan Ozkan; Kursad Genc

It is well known that neonatal hypoxic-ischemic brain injury leads to mental retardation and deficits in cognitive abilities such as learning and memory in human beings. The ameliorative effect of erythropoietin (Epo) on experimental hypoxic-ischemic brain injury in neonatal rats has been recently reported. However, the effect of Epo on cognitive abilities in the hypoxic-ischemic brain injury model is unknown. The aim of this study is to investigate the effects of Epo on learning-memory, behavior and neurodegeneration induced by hypoxia-ischemia. Seven days old Wistar Albino rat pups have been used in the study (n = 28). Experimental groups in the study were: (1) saline-treated hypoxia-ischemia group, (2) Epo-treated (i.p., 1000 U/kg) hypoxia-ischemia group, (3) sham-operated group, (4) control group. In hypoxia-ischemia groups, left common carotid artery was ligated permanently on the seventh postnatal day. Two hours after the procedure, hypoxia (92% nitrogen and 8% oxygen) was induced for 2.5 h. Epo was administered as a single dose immediately after the hypoxia period. When pups were 22 days old, learning experiments were performed using Morris water maze. On the 20th week, when brain development is accepted to be complete, learning experiments were repeated. Rats were then perfused and brains removed for macroscopic and microscopic evaluation. Epo treatment immediately after hypoxic-ischemic insult significantly improved long-term neurobehavioral achievements when tested during the subsequent phase of brain maturation and even into adulthood. Histopathological evaluation demonstrated that Epo also significantly diminished brain injury and spared hippocampal CA1 neurons. In conclusion, Epo administrated as a single dose immediately after neonatal hypoxic-ischemic insult provides benefit over a prolonged period in the still developing rat brain. Since the wide use of Epo in premature newborns, this agent may be potentially beneficial in treating asphyxial brain damage in the perinatal period.


Neonatology | 2003

Neuroprotective Effect of Erythropoietin on Hypoxic-Ischemic Brain Injury in Neonatal Rats

Abdullah Kumral; Erdener Özer; Osman Yilmaz; Mustafa Akhisaroglu; Necati Gökmen; Nuray Duman; Cagnur Ulukus; Sermin Genc; Hasan Ozkan

Erythropoietin (Epo) prevents ischemia and hypoxia-induced neuronal death in vitro. Recent studies have shown that this cytokine also has in vivo neuroprotective effects in cerebral and spinal ischemia in adult rodents. In this study, we aimed to investigate the effect of systemically administered recombinant human Epo on infarct volume and apoptotic neuronal death in a newborn rat hypoxic-ischemic brain injury model. Our results showed that a single dose of intraperitoneal Epo treatment (1,000 U/kg) significantly decreased the mean infarct volume as compared to the control group. In contrast to the Epo-treated group, histopathological examination by positive terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling of the affected brain in control animals revealed widespread neuronal injury associated with numerous apoptotic cells. Morphometric analysis to determine the extent of damage quantitatively ascertained that the mean infarct volume was significantly lower in the Epo-treated group (p < 0.003). These results suggest the beneficial neuroprotective effect of Epo in this model of neonatal hypoxic-ischemic brain injury. To our knowledge, this is the first study that demonstrates a protective effect of Epo against hypoxia-ischemia in the developing brain.


Neonatology | 2005

Erythropoietin Increases Glutathione Peroxidase Enzyme Activity and Decreases Lipid Peroxidation Levels in Hypoxic-Ischemic Brain Injury in Neonatal Rats

Abdullah Kumral; Sevil Gönenç; Osman Açikgöz; Ataç Sönmez; Kursad Genc; Osman Yilmaz; Necati Gökmen; Nuray Duman; Hasan Ozkan

Background: We have previously shown that erythropoietin (Epo) exerts neuroprotective effects in the Rice-Vannucci model of neonatal hypoxic-ischemic brain injury. However, the mechanisms of Epo protection in this model are still unclear. Objectives: In the present study, we studied the effects of systemically administered Epo on lipid peroxidation levels and antioxidant enzyme (superoxide dismutase and glutathione peroxidase) activities following hypoxic-ischemic brain injury in neonatal rats. Methods: Seven-day-old Wistar rat pups were subjected to left carotid artery occlusion followed by 2.5 h of hypoxic exposure. Brain lipid peroxidation levels and antioxidant enzyme activities were measured in the injured hemispheres 24 h after the hypoxic-ischemic insult. Results: Hypoxic-ischemic injury significantly increased the thiobarbituric acid-reactive substance levels in the injured hemispheres as compared to the control group. In addition, glutathione peroxidase activity was significantly elevated in Epo-treated animals compared to saline-treated animals and the control group. Conclusions: These results suggest that Epo exerts neuroprotective effects against hypoxic-ischemic brain injury at least partially via the modulation of antioxidant enzyme activity.


Neonatology | 2007

Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain.

Abdullah Kumral; Huseyin Baskin; Didem Cemile Yesilirmak; Bekir Ugur Ergur; Simge Aykan; Sermin Genc; Kursad Genc; Osman Yilmaz; Kazim Tugyan; Özlem Giray; Nuray Duman; Hasan Ozkan

Periventricular leukomalacia (PVL), a common neonatal brain white matter (WM) lesion, is frequently associated with cerebral palsy. Growing evidence has indicated that in addition to ischemia/reperfusion injury, cytokine-induced brain injury associated with maternal or fetal infection may also play an important role in the pathogenesis of PVL. Recent studies have shown that administration of lipopolysaccharide (LPS) to pregnant rats causes enhanced expression of the cytokines, i.e., IL-1β, TNF-α, and IL-6, in fetal brains. In recent years, it has been shown that erythropoietin (EPO) has a critical role in the development, maintenance, protection and repair of the nervous system. In the present study we investigated the effect of EPO on LPS-induced WM injury in Sprague-Dawley rats. LPS (500 µg/kg) suspension in pyrogen-free saline was administered intraperitoneally to pregnant rats at 18 and 19 days of gestation. The control group was treated with pyrogen-free saline. They were given 5,000 U/kg recombinant human EPO. Seven-day-old Sprague-Dawley rat pups were divided into four groups: control group, LPS-treated group, prenatal maternal EPO-treated group (5,000 U/kg, intraperitoneally given to pregnant rats at 18 and 19 days of gestation), and postnatal EPO-treated group (5,000 U/kg, intraperitoneally given to 1-day-old rat pups). Cytokine induction in the postnatal 7-day-old (P7) rat brain after maternal administration of LPS was determined by the ELISA method. The proinflammatory cytokine levels (IL-1β, TNF-α, and IL-6) in P7 rat pup brains were significantly increased in the LPS-treated group as compared with the control group. Prenatal maternal EPO treatment significantly reduced the concentration of TNF-α and IL-6 in the newborn rat brain following LPS injection. The concentration of IL-1β was decreased in the intrauterine EPO treatment group. Postnatal EPO treatment significantly decreased only the IL-6 concentration in the newborn rat brain following LPS injection. The concentration of cytokines, IL-1β and TNF-α, was reduced in the postnatal EPO treatment group. We demonstrated here that LPS administration in pregnant rats at gestational day 18 and 19 induced WM injury in P7 progeny characterized by apoptosis. Prenatal maternal and postnatal EPO treatment significantly reduced the number of apoptotic cells in the periventricular WM. Using immunohistochemistry techniques, we investigated the effects of maternal administration of LPS on myelin basic protein (MBP) staining, as a marker of myelination in the periventricular area in the neonatal rat brain. MBP staining was significantly less and weaker in the brains of the LPS-treated group as compared with the prenatal maternal EPO-treated group. However, the postnatal EPO treatment did not prevent LPS-stimulated loss of MBP-positive staining. In conclusion, especially prenatal maternal EPO treatment attenuates LPS-induced injury by reducing the expression of inflammatory cytokines and sparing MBP in the neonatal rat brain. While the postnatal EPO treatment prevented LPS-induced brain injury this effect was partial. To our knowledge, this is the first study that demonstrates a protective effect of EPO on LPS-induced WM injury in the developing brain. Regarding the wide use of EPO in premature newborns, this agent may be potentially beneficial in treating LPS-induced brain injury in the perinatal period.


Neonatology | 2004

Selective Inhibition of Nitric Oxide in Hypoxic-Ischemic Brain Model in Newborn Rats: Is It an Explanation for the Protective Role of Erythropoietin?

Abdullah Kumral; Huseyin Baskin; Necati Gökmen; Osman Yilmaz; Kursad Genc; Sermin Genc; Mansur Tatli; Nuray Duman; Erdener Özer; Hasan Ozkan

Erythropoietin (Epo) exerts neuroprotection against neuronal death induced by ischemia and hypoxia in vitro and in vivo. Recent studies suggest that the neuroprotective effects of Epo may depend upon different mechanisms, including the inhibition of nitric oxide (NO). We recently demonstrated that Epo exerts neuroprotection in a model of neonatal hypoxic-ischemic brain damage. In the present study, we directly determined whether systemic administration of recombinant Epo modulates cerebral NO production in a neonatal rat model of hypoxic-ischemic brain injury. Seven-day-old Wistar rat pups were subjected to left carotid artery occlusion followed by 2.5 h of hypoxic exposure. Brain nitrite levels were evaluated in both hemispheres (carotid ligated or nonligated) by Griess reagent 72 h after the hypoxic-ischemic insult. Our results show that hypoxic-ischemic insult results a significant increase in NO production as compared with NO levels in hypoxic hemispheres and control animals. A single dose of Epo treatment (1,000 U/kg i.p.) significantly decreased NO overproduction in the hypoxic-ischemic hemisphere, whereas no significant change appeared in hypoxia alone or in controls. These data suggest that the selective inhibitory effect of Epo on NO overproduction could have a neuroprotective effect in neonatal hypoxic-ischemic brain injury.


Neonatology | 2006

Erythropoietin Downregulates Bax and DP5 ProApoptotic Gene Expression in Neonatal Hypoxic-Ischemic Brain Injury

Abdullah Kumral; Sermin Genc; Erdener Özer; Osman Yilmaz; Necati Gökmen; Tolga Koroglu; Nuray Duman; Kursad Genc; Hasan Ozkan

Background: Perinatal asphyxia is an important cause of neonatal mortality and subsequent serious sequelae such as motor and cognitive deficits and seizures. The ameliorative effect of erythropoietin (Epo) on experimental hypoxic-ischemic brain injury in neonatal rats has been recently reported. Recent studies also confirm the antiapoptotic effect of Epo in a variety of in vitro and in vivo neuronal injury models including hypoxic-ischemic brain injury. However, molecular mechanisms of Epo protection and antiapoptotic effect in this model are unclear. Epo may exert its antiapoptotic effect via the differential regulation of the expression of genes involved in the apoptotic process. Objectives: Thus, in the present study, we studied the effects of systemically administered Epo on antiapoptotic (bcl-2, bcl-XL), proapoptotic (bax and DP5) gene expression following hypoxic-ischemic brain injury in neonatal rats. Methods: Seven- day-old Wistar rat pups were divided into three groups: control group (n = 15), saline-treated group (n = 17), and Epo-treated group (n = 18). Rat pups were subjected to left carotid artery occlusion followed by 2.5 h of hypoxic exposure. Epo-treated group received an intraperitoneal injection of recombinant human Epo at a dose of 1,000 units/kg, saline-treated group received an intraperitoneal injection of saline at the same volume of Epo. Forty-eight hours after hypoxia, 3 animals in each group were killed for histopathological evaluation. To detect DNA fragmentation in cell nuclei, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling reaction was applied. Bcl-2 and bax protein expression were also analyzed with immunohistochemistry. For reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, rats were sacrificed 4, 12, and 24 h after hypoxia. Bcl-2, bcl-XL, bax, and DP5 mRNA expression were analyzed by RT-PCR. Results: Epo significantly prevented hypoxia-ischemia-induced bax and DP5 mRNA upregulation in brain tissue. Epo did not show any effect on bcl-XL transcription altered by injury. However, Epo reversed injury-induced downregulation in bcl-2 transcription. Modulating effects of Epo on bcl-2 and bax protein expression were also revealed by immunohistochemistry. Conclusions: These results suggest that Epo exerts a neuroprotective effect against hypoxic-ischemic brain injury, at least partially, via the differential regulation of the expression of genes involved in apoptotic process.


Brain & Development | 2008

Hyperoxic exposure leads to cell death in the developing brain

Uluç Yiş; Semra Hız Kurul; Abdullah Kumral; Serap Cilaker; Kazim Tugyan; Şermin Genç; Osman Yilmaz

Premature infants have high incidence of motor and cognitive impairment in later life. Supraphysiological oxygen concentrations are routinely used in neonatal intensive care units and elicit injury to premature lungs and retina. Since the effects of hyperoxia on the developing brain are scarce, we studied the effects of high oxygen on this tissue. Wistar rat pups were exposed from birth until day 5 to 21% or 80% oxygen. The neuronal density and apoptosis in CA1 and dentate gyrus of hippocampus, prefrontal cortex, parietal cortex, subiculum, and retrosplenial cortex were assessed by immunohistochemistry and ELISA cell death assay. Neuronal density of the investigated brain areas were significantly decreased in the hyperoxia group. Furthermore, using ELISA cell death and TUNEL assays, we observed increased cell death in the developing brain. Our results show that hyperoxia induces cell death in the developing rat brain. This may be one of the important mechanisms that cause motor and cognitive impairment in later life of premature infants.


Brain & Development | 2011

Erythropoietin in neonatal brain protection: The past, the present and the future

Abdullah Kumral; Funda Tuzun; Meryem Gülfer Oner; Sermin Genc; Nuray Duman; Hasan Ozkan

Over the last decade, neuroprotective effects of erythropoietin (Epo) and its underlying mechanisms in terms of signal transduction pathways have been defined and there is a growing interest in the potential therapeutic use of Epo for neuroprotection. Several mechanisms by which Epo provides neuroprotection are recognized. In this review, we focused on the neuroprotective mechanisms of Epo and provide a short overview on both experimental and clinical studies, testing Epo as a neuroprotective agent in the neonatal brain injury, and the safety concerns with the clinical use of Epo treatment in neonates.


Pediatric Research | 2005

Effects of erythropoietin on hyperoxic lung injury in neonatal rats

Esra Arun Ozer; Abdullah Kumral; Erdener Özer; Osman Yilmaz; Nuray Duman; Sermin Özkal; Tolga Koroglu; Hasan Ozkan

Pulmonary oxygen toxicity is believed to play a prominent role in the lung injury that leads to the development of bronchopulmonary dysplasia (BPD). To determine whether human recombinant erythropoietin (rhEPO) treatment reduces the risk of developing BPD, we investigated the effect of rhEPO treatment on the histopathologic changes seen in hyperoxia-induced lung injury of BPD. Twenty-five rat pups were divided into four groups: air-exposed control group (n = 5), hyperoxia-exposed placebo group (n = 7), hyperoxia-exposed rhEPO-treated group (n = 6), and air-exposed rhEPO-treated group (n = 7). Measurement of alveolar surface area, quantification of secondary crest formation, microvessel count, evaluation of alveolar septal fibrosis, and smooth muscle actin immunostaining were performed to assess hyperoxia-induced changes in lung morphology. Treatment of hyperoxia-exposed animals with rhEPO resulted in a significant increase in the mean alveolar area, number of secondary crests formed, and the microvessel count in comparison with hyperoxia-exposed placebo-treated animals. There was significantly less fibrosis in rhEPO-treated animals. However, treatment of hyperoxia-exposed animals with rhEPO did not result in a significant change in smooth muscle content compared with hyperoxia-exposed placebo treated animals. Our results suggest treatment with rhEPO during hyperoxia exposure is associated with improved alveolar structure, enhanced vascularity, and decreased fibrosis. Therefore, we conclude that treatment of preterm infants with EPO might reduce the risk of developing BPD.


Acta Paediatrica | 2004

Spontaneous intestinal perforation after oral ibuprofen treatment of patent ductus arteriosus in two very-low-birthweight infants.

Mansur Tatli; Abdullah Kumral; Nuray Duman; Korcan Demir; O Gurcu; Hasan Ozkan

Aim: To discuss intestinal side effects of ibuprofen in the treatment of patent ductus arteriosus, after having observed two cases of spontaneous intestinal perforation following ibuprofen treatment. Methods: Clinical and laboratory records of two preterm infants, who developed intestinal perforation after ibuprofen administration, were evaluated. Results: Gestational ages of infants were 29 wk (male) and 30 wk (female). Both infants developed intestinal perforations without signs of necrotizing enterocolitis. The perforations cured with Penrose drainage alone.

Collaboration


Dive into the Abdullah Kumral's collaboration.

Top Co-Authors

Avatar

Hasan Ozkan

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar

Nuray Duman

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar

Funda Tuzun

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar

Osman Yilmaz

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazim Tugyan

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar

Sermin Genc

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge