Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sermin Genc is active.

Publication


Featured researches published by Sermin Genc.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury

Murat Çelik; Necati Gökmen; Serhat Erbayraktar; Mustafa Akhisaroglu; Selman Konakç; Cagnur Ulukus; Sermin Genc; Kursad Genc; Emel Sağıroğlu; Anthony Cerami; Michael Brines

The cytokine erythropoietin (EPO) possesses potent neuroprotective activity against a variety of potential brain injuries, including transient ischemia and reperfusion. It is currently unknown whether EPO will also ameliorate spinal cord injury. Immunocytochemistry performed using human spinal cord sections showed abundant EPO receptor immunoreactivity of capillaries, especially in white matter, and motor neurons within the ventral horn. We used a transient global spinal ischemia model in rabbits to test whether exogenous EPO can cross the blood–spinal cord barrier and protect these motor neurons. Spinal cord ischemia was produced in rabbits by occlusion of the abdominal aorta for 20 min, followed by saline or recombinant human (rHu)-EPO (350, 800, or 1,000 units/kg of body weight) administered intravenously immediately after the onset of reperfusion. The functional neurological status of animals was better for rHu-EPO-treated animals 1 h after recovery from anesthesia, and improved dramatically over the next 48 h. In contrast, saline-treated animals exhibited a poorer neurological score at 1 h and did not significantly improve. Histopathological examination of the affected spinal cord revealed widespread motor neuron injury associated with positive terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling in control but not in rHu-EPO-treated animals. These observations suggest both an acute as well as a delayed beneficial action of rHu-EPO in ischemic spinal cord injury. Because rHu-EPO is currently used widely with an excellent safety profile, clinical trials evaluating its potential to prevent motor neuron apoptosis and the neurological deficits that occur as a consequence of ischemic injury are warranted.


Behavioural Brain Research | 2004

Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats

Abdullah Kumral; Nazan Uysal; Kazim Tugyan; Ataç Sönmez; Osman Yilmaz; Necati Gökmen; Muge Kiray; Sermin Genc; Nuray Duman; Tolga Koroglu; Hasan Ozkan; Kursad Genc

It is well known that neonatal hypoxic-ischemic brain injury leads to mental retardation and deficits in cognitive abilities such as learning and memory in human beings. The ameliorative effect of erythropoietin (Epo) on experimental hypoxic-ischemic brain injury in neonatal rats has been recently reported. However, the effect of Epo on cognitive abilities in the hypoxic-ischemic brain injury model is unknown. The aim of this study is to investigate the effects of Epo on learning-memory, behavior and neurodegeneration induced by hypoxia-ischemia. Seven days old Wistar Albino rat pups have been used in the study (n = 28). Experimental groups in the study were: (1) saline-treated hypoxia-ischemia group, (2) Epo-treated (i.p., 1000 U/kg) hypoxia-ischemia group, (3) sham-operated group, (4) control group. In hypoxia-ischemia groups, left common carotid artery was ligated permanently on the seventh postnatal day. Two hours after the procedure, hypoxia (92% nitrogen and 8% oxygen) was induced for 2.5 h. Epo was administered as a single dose immediately after the hypoxia period. When pups were 22 days old, learning experiments were performed using Morris water maze. On the 20th week, when brain development is accepted to be complete, learning experiments were repeated. Rats were then perfused and brains removed for macroscopic and microscopic evaluation. Epo treatment immediately after hypoxic-ischemic insult significantly improved long-term neurobehavioral achievements when tested during the subsequent phase of brain maturation and even into adulthood. Histopathological evaluation demonstrated that Epo also significantly diminished brain injury and spared hippocampal CA1 neurons. In conclusion, Epo administrated as a single dose immediately after neonatal hypoxic-ischemic insult provides benefit over a prolonged period in the still developing rat brain. Since the wide use of Epo in premature newborns, this agent may be potentially beneficial in treating asphyxial brain damage in the perinatal period.


Brain Research | 2004

Erythropoietin and the nervous system

Sermin Genc; Tolga Koroglu; Kursad Genc

Erythropoietin (Epo) is a hematopoietic growth factor and cytokine which stimulates erythropoiesis. In recent years, Epo has been shown to have important nonhematopoietic functions in the nervous system. Nonerythropoietic actions of Epo include a critical role in the development, maintenance, protection and repair of the nervous system. A wide variety of experimental studies have shown that Epo and its receptor are expressed in the nervous system and Epo exerts remarkable neuroprotection in cell culture and animal models of nervous system disorders. In this review, we summarize the current knowledge on the neurotrophic and neuroprotective properties of Epo, the mechanisms by which Epo produces neuroprotection and the signal transduction systems regulated by Epo in the nervous system.


Journal of Toxicology | 2012

The Adverse Effects of Air Pollution on the Nervous System

Sermin Genc; Zeynep Zadeoglulari; Stefan H. Fuss; Kursad Genc

Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimers disease, Parkinsons disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.


Neonatology | 2003

Neuroprotective Effect of Erythropoietin on Hypoxic-Ischemic Brain Injury in Neonatal Rats

Abdullah Kumral; Erdener Özer; Osman Yilmaz; Mustafa Akhisaroglu; Necati Gökmen; Nuray Duman; Cagnur Ulukus; Sermin Genc; Hasan Ozkan

Erythropoietin (Epo) prevents ischemia and hypoxia-induced neuronal death in vitro. Recent studies have shown that this cytokine also has in vivo neuroprotective effects in cerebral and spinal ischemia in adult rodents. In this study, we aimed to investigate the effect of systemically administered recombinant human Epo on infarct volume and apoptotic neuronal death in a newborn rat hypoxic-ischemic brain injury model. Our results showed that a single dose of intraperitoneal Epo treatment (1,000 U/kg) significantly decreased the mean infarct volume as compared to the control group. In contrast to the Epo-treated group, histopathological examination by positive terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling of the affected brain in control animals revealed widespread neuronal injury associated with numerous apoptotic cells. Morphometric analysis to determine the extent of damage quantitatively ascertained that the mean infarct volume was significantly lower in the Epo-treated group (p < 0.003). These results suggest the beneficial neuroprotective effect of Epo in this model of neonatal hypoxic-ischemic brain injury. To our knowledge, this is the first study that demonstrates a protective effect of Epo against hypoxia-ischemia in the developing brain.


Neuroscience Letters | 2001

Erythropoietin exerts neuroprotection in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/BL mice via increasing nitric oxide production

Sermin Genc; Filiz Kuralay; Kursad Genc; Mustafa Akhisaroglu; Sakir Fadiloglu; Kutsal Yorukoglu; Meral Fadıloğlu; Ataman Güre

Erythropoietin (EPO), produced by the kidney and fetal liver, is a cytokine-hormone that stimulates erythropoiesis under hypoxic conditions. It has been shown that EPO is produced in the central nervous system and its receptor is expressed on neurons. Since EPO has neuroprotective effects in vitro and in vivo against brain injury, we investigated the effect of EPO treatment on locomotor activities of animals, survival of nigral dopaminergic neurons and nitrate levels in substantia nigra and striatum in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of Parkinsonism in C57/BL mice. Our findings suggest that EPO has protective and treating effect in MPTP-induced neurotoxicity in this mouse model of Parkinsons Disease via increasing nitric oxide production.


Neuroscience Letters | 2002

Erythropoietin restores glutathione peroxidase activity in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine-induced neurotoxicity in C57BL mice and stimulates murine astroglial glutathione peroxidase production in vitro

Sermin Genc; Mustafa Akhisaroglu; Filiz Kuralay; Kursad Genc

Recently, we have reported that erythropoietin (Epo) provides neuroprotection in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-induced neurotoxicity in vivo. In the present study, we investigated the effects of single Epo administration on brain antioxidant enzyme (superoxide dismutase (SOD) and glutathion peroxidase (GSHPx)) activities in this model in C57BL/6 mice. We found that MPTP treatment decreased GSHPx activity in both substantia nigra and striatum, and Epo restores nigral GSHPx activity decreased by MPTP. SOD enzyme activity was not significantly changed by MPTP and Epo treatment. Further, Epo stimulated astroglial GSHPx production in neonatal murine astroglial cell culture suggesting that the possible cell source for the stimulation of GSHPx activity by Epo in the MPTP-induced neurotoxicity model are astroglia. In conclusion, modulation of the astroglial antioxidant defense system might be one of the mechanisms by which Epo exerts a beneficial effect in MPTP-induced Parkinsonism.


Parkinson's Disease | 2011

The Nrf2/ARE Pathway: A Promising Target to Counteract Mitochondrial Dysfunction in Parkinson's Disease.

Kemal Ugur Tufekci; Ezgi Civi Bayin; Sermin Genc; Kursad Genc

Mitochondrial dysfunction is a prominent feature of various neurodegenerative diseases as strict regulation of integrated mitochondrial functions is essential for neuronal signaling, plasticity, and transmitter release. Many lines of evidence suggest that mitochondrial dysfunction plays a central role in the pathogenesis of Parkinsons disease (PD). Several PD-associated genes interface with mitochondrial dynamics regulating the structure and function of the mitochondrial network. Mitochondrial dysfunction can induce neuron death through a plethora of mechanisms. Both mitochondrial dysfunction and neuroinflammation, a common denominator of PD, lead to an increased production of reactive oxygen species, which are detrimental to neurons. The transcription factor nuclear factor E2-related factor 2 (Nrf2, NFE2L2) is an emerging target to counteract mitochondrial dysfunction and its consequences in PD. Nrf2 activates the antioxidant response element (ARE) pathway, including a battery of cytoprotective genes such as antioxidants and anti-inflammatory genes and several transcription factors involved in mitochondrial biogenesis. Here, the current knowledge about the role of mitochondrial dysfunction in PD, Nrf2/ARE stress-response mechanisms, and the evidence for specific links between this pathway and PD are summarized. The neuroprotection of nigral dopaminergic neurons by the activation of Nrf2 through several inducers in PD is also emphasized as a promising therapeutic approach.


Advances in Protein Chemistry | 2012

Inflammation in Parkinson's disease.

Kemal Ugur Tufekci; Ralph Meuwissen; Sermin Genc; Kursad Genc

Parkinsons disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration.


Neonatology | 2007

Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain.

Abdullah Kumral; Huseyin Baskin; Didem Cemile Yesilirmak; Bekir Ugur Ergur; Simge Aykan; Sermin Genc; Kursad Genc; Osman Yilmaz; Kazim Tugyan; Özlem Giray; Nuray Duman; Hasan Ozkan

Periventricular leukomalacia (PVL), a common neonatal brain white matter (WM) lesion, is frequently associated with cerebral palsy. Growing evidence has indicated that in addition to ischemia/reperfusion injury, cytokine-induced brain injury associated with maternal or fetal infection may also play an important role in the pathogenesis of PVL. Recent studies have shown that administration of lipopolysaccharide (LPS) to pregnant rats causes enhanced expression of the cytokines, i.e., IL-1β, TNF-α, and IL-6, in fetal brains. In recent years, it has been shown that erythropoietin (EPO) has a critical role in the development, maintenance, protection and repair of the nervous system. In the present study we investigated the effect of EPO on LPS-induced WM injury in Sprague-Dawley rats. LPS (500 µg/kg) suspension in pyrogen-free saline was administered intraperitoneally to pregnant rats at 18 and 19 days of gestation. The control group was treated with pyrogen-free saline. They were given 5,000 U/kg recombinant human EPO. Seven-day-old Sprague-Dawley rat pups were divided into four groups: control group, LPS-treated group, prenatal maternal EPO-treated group (5,000 U/kg, intraperitoneally given to pregnant rats at 18 and 19 days of gestation), and postnatal EPO-treated group (5,000 U/kg, intraperitoneally given to 1-day-old rat pups). Cytokine induction in the postnatal 7-day-old (P7) rat brain after maternal administration of LPS was determined by the ELISA method. The proinflammatory cytokine levels (IL-1β, TNF-α, and IL-6) in P7 rat pup brains were significantly increased in the LPS-treated group as compared with the control group. Prenatal maternal EPO treatment significantly reduced the concentration of TNF-α and IL-6 in the newborn rat brain following LPS injection. The concentration of IL-1β was decreased in the intrauterine EPO treatment group. Postnatal EPO treatment significantly decreased only the IL-6 concentration in the newborn rat brain following LPS injection. The concentration of cytokines, IL-1β and TNF-α, was reduced in the postnatal EPO treatment group. We demonstrated here that LPS administration in pregnant rats at gestational day 18 and 19 induced WM injury in P7 progeny characterized by apoptosis. Prenatal maternal and postnatal EPO treatment significantly reduced the number of apoptotic cells in the periventricular WM. Using immunohistochemistry techniques, we investigated the effects of maternal administration of LPS on myelin basic protein (MBP) staining, as a marker of myelination in the periventricular area in the neonatal rat brain. MBP staining was significantly less and weaker in the brains of the LPS-treated group as compared with the prenatal maternal EPO-treated group. However, the postnatal EPO treatment did not prevent LPS-stimulated loss of MBP-positive staining. In conclusion, especially prenatal maternal EPO treatment attenuates LPS-induced injury by reducing the expression of inflammatory cytokines and sparing MBP in the neonatal rat brain. While the postnatal EPO treatment prevented LPS-induced brain injury this effect was partial. To our knowledge, this is the first study that demonstrates a protective effect of EPO on LPS-induced WM injury in the developing brain. Regarding the wide use of EPO in premature newborns, this agent may be potentially beneficial in treating LPS-induced brain injury in the perinatal period.

Collaboration


Dive into the Sermin Genc's collaboration.

Top Co-Authors

Avatar

Kursad Genc

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hasan Ozkan

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar

Nuray Duman

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar

Osman Yilmaz

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar

Kazim Tugyan

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge