Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abel Monteagudo is active.

Publication


Featured researches published by Abel Monteagudo.


Science | 2009

Drought sensitivity of the Amazon rainforest

Oliver L. Phillips; Luiz E. O. C. Aragão; Simon L. Lewis; Joshua B. Fisher; Jon Lloyd; Gabriela Lopez-Gonzalez; Yadvinder Malhi; Abel Monteagudo; J. Peacock; Carlos A. Quesada; Geertje M.F. van der Heijden; Samuel Almeida; Iêda Leão do Amaral; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Olaf Banki; Lilian Blanc; Damien Bonal; Paulo M. Brando; Jérôme Chave; Atila Alves de Oliveira; Nallaret Dávila Cardozo; Claudia I. Czimczik; Ted R. Feldpausch; Maria Aparecida Freitas; Emanuel Gloor; Niro Higuchi; Eliana M. Jimenez; Gareth Lloyd

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


New Phytologist | 2010

Drought–mortality relationships for tropical forests

Oliver L. Phillips; Geertje M.F. van der Heijden; Simon L. Lewis; Gabriela Lopez-Gonzalez; Luiz E. O. C. Aragão; Jon Lloyd; Yadvinder Malhi; Abel Monteagudo; Samuel Almeida; Esteban Álvarez Dávila; Iêda Leão do Amaral; Sandy Andelman; Ana Andrade; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Lilian Blanc; Damien Bonal; Atila Alves de Oliveira; Kuo-Jung Chao; Nallaret Dávila Cardozo; Lola Da Costa; Ted R. Feldpausch; Joshua B. Fisher; Nikolaos M. Fyllas; Maria Aparecida Freitas; David Galbraith; Emanuel Gloor; Niro Higuchi; Eurídice N. Honorio

*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.


Journal of Vegetation Science | 2002

An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR)

Yadvinder Malhi; Oliver L. Phillips; Jon Lloyd; Timothy R. Baker; James Wright; Samuel Almeida; L. Arroyo; T. Frederiksen; John Grace; Niro Higuchi; Timothy J. Killeen; William F. Laurance; C. Leaño; Simon L. Lewis; Patrick Meir; Abel Monteagudo; David A. Neill; P. Núñez Vargas; S.N. Panfil; S. Patiño; Nigel C. A. Pitman; Carlos A. Quesada; A. Rudas-Ll.; Rafael de Paiva Salomão; Scott R. Saleska; Natalino Silva; M. Silveira; W.G. Sombroek; Renato Valencia; R. Vásquez Martínez

Abstract The Amazon basin is likely to be increasingly affected by environmental changes: higher temperatures, changes in precipitation, CO2 fertilization and habitat fragmentation. To examine the important ecological and biogeochemical consequences of these changes, we are developing an international network, RAINFOR, which aims to monitor forest biomass and dynamics across Amazonia in a co-ordinated fashion in order to understand their relationship to soil and climate. The network will focus on sample plots established by independent researchers, some providing data extending back several decades. We will also conduct rapid transect studies of poorly monitored regions. Field expeditions analysed local soil and plant properties in the first phase (2001–2002). Initial results suggest that the network has the potential to reveal much information on the continental-scale relations between forest and environment. The network will also serve as a forum for discussion between researchers, with the aim of standardising sampling techniques and methodologies that will enable Amazonian forests to be monitored in a coherent manner in the coming decades. Abbreviation: PSP = Permanent sample plot.


Global Ecology and Biogeography | 2014

Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

Edward T. A. Mitchard; Ted R. Feldpausch; Roel J. W. Brienen; Gabriela Lopez-Gonzalez; Abel Monteagudo; Timothy R. Baker; Simon L. Lewis; Jon Lloyd; Carlos A. Quesada; Manuel Gloor; Hans ter Steege; Patrick Meir; Esteban Álvarez; Alejandro Araujo-Murakami; Luiz E. O. C. Aragão; Luzmila Arroyo; Gerardo Aymard; Olaf Banki; Damien Bonal; Sandra A. Brown; Foster Brown; Carlos Cerón; Victor Chama Moscoso; Jérôme Chave; James A. Comiskey; Fernando Cornejo; Massiel Corrales Medina; Lola Da Costa; Flávia R. C. Costa; Anthony Di Fiore

Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.


Global Change Biology | 2016

Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models

Michelle O. Johnson; David Galbraith; Manuel Gloor; Hannes De Deurwaerder; Matthieu Guimberteau; Anja Rammig; Kirsten Thonicke; Hans Verbeeck; Celso von Randow; Abel Monteagudo; Oliver L. Phillips; Roel J. W. Brienen; Ted R. Feldpausch; Gabriela Lopez Gonzalez; Sophie Fauset; Carlos A. Quesada; Bradley Christoffersen; Philippe Ciais; Gilvan Sampaio; Bart Kruijt; Patrick Meir; Paul R. Moorcroft; Ke Zhang; Esteban Álvarez-Dávila; Atila Alves de Oliveira; Iêda Leão do Amaral; Ana Andrade; Luiz E. O. C. Aragão; Alejandro Araujo-Murakami; E.J.M.M. Arets

Abstract Understanding the processes that determine above‐ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin‐wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.


Plant Ecology & Diversity | 2014

Soil physical conditions limit palm and tree basal area in Amazonian forests

Thaise Emilio; Carlos A. Quesada; Flávia R. C. Costa; Abel Monteagudo; A. M. Araujo; A. Pena-Cruz; A. Torres Lezama; Carolina V. Castilho; David A. Neill; E.M. Oblitas Mendoza; Esteban Álvarez; Eurídice N. Honorio; G.A. Parada; H. ter Steege; Hirma Ramírez-Angulo; Jérôme Chave; John Terborgh; Juliana Schietti; Marcos Silveira; María Cristina Peñuela-Mora; Michael Schwarz; Olaf S. Bánki; O.L. Philips; R. Thomas; R. Vasquez; Roel J. W. Brienen; Ted R. Feldpausch; Timothy J. Killeen; Timothy R. Baker; William E. Magnusson

Background: Trees and arborescent palms adopt different rooting strategies and responses to physical limitations imposed by soil structure, depth and anoxia. However, the implications of these differences for understanding variation in the relative abundance of these groups have not been explored. Aims: We analysed the relationship between soil physical constraints and tree and palm basal area to understand how the physical properties of soil are directly or indirectly related to the structure and physiognomy of lowland Amazonian forests. Methods: We analysed inventory data from 74 forest plots across Amazonia, from the RAINFOR and PPBio networks for which basal area, stand turnover rates and soil data were available. We related patterns of basal area to environmental variables in ordinary least squares and quantile regression models. Results: Soil physical properties predicted the upper limit for basal area of both trees and palms. This relationship was direct for palms but mediated by forest turnover rates for trees. Soil physical constraints alone explained up to 24% of palm basal area and, together with rainfall, up to 18% of tree basal area. Tree basal area was greatest in forests with lower turnover rates on well-structured soils, while palm basal area was high in weakly structured soils. Conclusions: Our results show that palms and trees are associated with different soil physical conditions. We suggest that adaptations of these life-forms drive their responses to soil structure, and thus shape the overall forest physiognomy of Amazonian forest vegetation.


Oecologia | 2008

Contrasting patterns of diameter and biomass increment across tree functional groups in Amazonian forests

Helen C. Keeling; Timothy R. Baker; Rodolfo Vásquez Martínez; Abel Monteagudo; Oliver L. Phillips

Species’ functional traits may help determine rates of carbon gain, with physiological and morphological trade-offs relating to shade tolerance affecting photosynthetic capacity and carbon allocation strategies. However, few studies have examined these trade-offs from the perspective of whole-plant biomass gain of adult trees. We compared tree-level annual diameter increments and annual above-ground biomass (AGB) increments in eight long-term plots in hyper-diverse northwest Amazonia to wood density (ρ; a proxy for shade tolerance), whilst also controlling for resource supply (light and soil fertility). ρ and annual diameter increment were negatively related, confirming expected differences in allocation associated with shade tolerance, such that light-demanding species allocate a greater proportion of carbon to diameter gain at the expense of woody tissue density. However, contrary to expectations, we found a positive relationship between ρ and annual AGB increment in more fertile sites, although AGB gain did not differ significantly with ρ class on low-fertility sites. Whole-plant carbon gain may be greater in shade-tolerant species due to higher total leaf area, despite lower leaf-level carbon assimilation rates. Alternatively, rates of carbon loss may be higher in more light-demanding species: higher rates of litterfall, respiration or allocation to roots, are all plausible mechanisms. However, the relationships between ρ and AGB and diameter increments were weak; resource availability always exerted a stronger influence on tree growth rates.


Biotropica | 2016

Low Phylogenetic Beta Diversity and Geographic Neo-endemism in Amazonian White-sand Forests

Juan Ernesto Guevara; Gabriel Damasco; Christopher Baraloto; Paul V. A. Fine; M. C. Peñuela; Carolina V. Castilho; Alberto Vincentini; Dairon Cárdenas; Florian Wittmann; Natália Targhetta; Oliver L. Phillips; Juliana Stropp; Iêda Leão do Amaral; Paul Maas; Abel Monteagudo; Eliana M. Jimenez; Rachel Thomas; Roel J. W. Brienen; Alvaro Duque; William E. Magnusson; Cid Ferreira; Eurídice N. Honorio; Francisca Dionizia de Almeida Matos; Freddy Ramirez Arevalo; Julien Engel; Pascal Petronelli; Rodolfo V. Vasquez; Hans ter Steege

Over the past three decades, many small-scale floristic studies of white-sand forests across the Amazon basin have been published. Nonetheless, a basin-wide description of both taxonomic and phylogenetic alpha and beta diversity at regional scales has never been achieved. We present a complete floristic analysis of white-sand forests across the Amazon basin including both taxonomic and phylogenetic diversity. We found strong regional differences in the signal of phylogenetic community structure with both overall and regional Net Relatedness Index and Nearest Taxon Index values found to be significantly positive leading to a pattern of phylogenetic clustering. Additionally, we found high taxonomic dissimilarity but low phylogenetic dissimilarity in pairwise community comparisons. These results suggest that recent diversification has played an important role in the assembly of white-sand forests causing geographic neo-endemism patterns at the regional scale.


Trends in Ecology and Evolution | 2017

Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists

Timothy R. Baker; R. Toby Pennington; Kyle G. Dexter; Paul V. A. Fine; Helen Fortune-Hopkins; Eurídice N. Honorio; Isau Huamantupa-Chuquimaco; Bente B. Klitgård; Gwilym P. Lewis; Haroldo Cavalcante de Lima; Peter S. Ashton; Christopher Baraloto; Stuart J. Davies; Michael J. Donoghue; Maria Kaye; W. John Kress; Caroline E. R. Lehmann; Abel Monteagudo; Oliver L. Phillips; Rodolfo Vasquez

Closer collaboration among ecologists, systematists, and evolutionary biologists working in tropical forests, centred on studies within long-term permanent plots, would be highly beneficial for their respective fields. With a key unifying theme of the importance of vouchered collection and precise identification of species, especially rare ones, we identify four priority areas where improving links between these communities could achieve significant progress in biodiversity and conservation science: (i) increasing the pace of species discovery; (ii) documenting species turnover across space and time; (iii) improving models of ecosystem change; and (iv) understanding the evolutionary assembly of communities and biomes.


Journal of Ecology | 2016

Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests

Timothy R. Baker; Dilys M. Vela Díaz; Victor Chama Moscoso; Gilberto Navarro; Abel Monteagudo; Ruy Pinto; Katia G. Cangani; Nikolaos M. Fyllas; Gabriela Lopez Gonzalez; William F. Laurance; Simon L. Lewis; Jonathan Lloyd; Hans ter Steege; John Terborgh; Oliver L. Phillips

Summary Understanding the resilience of moist tropical forests to treefall disturbance events is important for understanding the mechanisms that underlie species coexistence and for predicting the future composition of these ecosystems. Here, we test whether variation in the functional composition of Amazonian forests determines their resilience to disturbance. We studied the legacy of natural treefall disturbance events in four forests across Amazonia that differ substantially in functional composition. We compared the composition and diversity of all free‐standing woody stems 2–10 cm diameter in previously disturbed and undisturbed 20 × 20 m subplots within 55, one‐hectare, long‐term forest inventory plots. Overall, stem number increased following disturbance, and species and functional composition shifted to favour light‐wooded, small‐seeded taxa. Alpha‐diversity increased, but beta‐diversity was unaffected by disturbance, in all four forests. Changes in response to disturbance in both functional composition and alpha‐diversity were, however, small (2 – 4% depending on the parameter) and similar among forests. Synthesis. This study demonstrates that variation in the functional composition of Amazonian forests does not lead to large differences in the response of these forests to treefall disturbances, and overall, these events have a minor role in maintaining the diversity of these ecosystems.

Collaboration


Dive into the Abel Monteagudo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Neill

Missouri Botanical Garden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge