Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abhai K. Tripathi is active.

Publication


Featured researches published by Abhai K. Tripathi.


Nature | 2010

Chemical genetics of Plasmodium falciparum

W. Armand Guiguemde; Anang A. Shelat; David Bouck; Sandra Duffy; Gregory J. Crowther; Paul H. Davis; David C. Smithson; Michele C. Connelly; Julie Clark; Fangyi Zhu; María Belén Jiménez-Díaz; María Santos Martínez; Emily B. Wilson; Abhai K. Tripathi; Jiri Gut; Elizabeth R. Sharlow; Ian Bathurst; Farah El Mazouni; Joseph W. Fowble; Isaac P. Forquer; Paula L. McGinley; Steve Castro; Iñigo Angulo-Barturen; Santiago Ferrer; Philip J. Rosenthal; Joseph L. DeRisi; David J. Sullivan; John S. Lazo; David S. Roos; Michael K. Riscoe

Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library—many of which showed potent in vitro activity against drug-resistant P. falciparum strains—and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.


Biochemical Journal | 2007

The role of neutral lipid nanospheres in Plasmodium falciparum haem crystallization

John M. Pisciotta; Isabelle Coppens; Abhai K. Tripathi; Peter F. Scholl; Joel L. Shuman; Sunil Bajad; Vladimir Shulaev; David J. Sullivan

The intraerythrocytic malaria parasite constructs an intracellular haem crystal, called haemozoin, within an acidic digestive vacuole where haemoglobin is degraded. Haem crystallization is the target of the widely used antimalarial quinoline drugs. The intracellular mechanism of molecular initiation of haem crystallization, whether by proteins, polar membrane lipids or by neutral lipids, has not been fully substantiated. In the present study, we show neutral lipid predominant nanospheres, which envelop haemozoin inside Plasmodium falciparum digestive vacuoles. Subcellular fractionation of parasite-derived haemozoin through a dense 1.7 M sucrose cushion identifies monoacylglycerol and diacylglycerol neutral lipids as well as some polar lipids in close association with the purified haemozoin. Global MS lipidomics detects monopalmitic glycerol and monostearic glycerol, but not mono-oleic glycerol, closely associated with haemozoin. The complex neutral lipid mixture rapidly initiates haem crystallization, with reversible pH-dependent quinoline inhibition associated with quinoline entry into the neutral lipid microenvironment. Neutral lipid nanospheres both enable haem crystallization in the presence of high globin concentrations and protect haem from H2O2 degradation. Conceptually, the present study shifts the intracellular microenvironment of haem crystallization and quinoline inhibition from a polar aqueous location to a non-polar neutral lipid nanosphere able to exclude water for efficient haem crystallization.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells

Marion Avril; Abhai K. Tripathi; Andrew J. Brazier; Cheryl Andisi; Joel H. Janes; Vijaya L. Soma; David J. Sullivan; Peter C. Bull; Monique F. Stins; Joseph D. Smith

Cerebral malaria (CM) is a deadly complication of Plasmodium falciparum infection, but specific interactions involved in cerebral homing of infected erythrocytes (IEs) are poorly understood. In this study, P. falciparum-IEs were characterized for binding to primary human brain microvascular endothelial cells (HBMECs). Before selection, CD36 or ICAM-1–binding parasites exhibited punctate binding to a subpopulation of HBMECs and binding was CD36 dependent. Panning of IEs on HBMECs led to a more dispersed binding phenotype and the selection of three var genes, including two that encode the tandem domain cassette 8 (DC8) and were non-CD36 binders. Multiple domains in the DC8 cassette bound to brain endothelium and the cysteine-rich interdomain region 1 inhibited binding of P. falciparum-IEs by 50%, highlighting a key role for the DC8 cassette in cerebral binding. It is mysterious how deadly binding variants are maintained in the parasite population. Clonal parasite lines expressing the two brain-adherent DC8-var genes did not bind to any of the known microvascular receptors, indicating unique receptors are involved in cerebral binding. They could also adhere to brain, lung, dermis, and heart endothelial cells, suggesting cerebral binding variants may have alternative sequestration sites. Furthermore, young African children with CM or nonsevere control cases had antibodies to HBMEC-selected parasites, indicating they had been exposed to related variants during childhood infections. This analysis shows that specific P. falciparum erythrocyte membrane protein 1 types are linked to cerebral binding and suggests a potential mechanism by which individuals may build up immunity to severe disease, in the absence of CM.


Cell Host & Microbe | 2008

Platelet factor 4 mediates inflammation in experimental cerebral malaria.

Kalyan Srivastava; Ian A. Cockburn; AnneMarie Swaim; Laura E. Thompson; Abhai K. Tripathi; Craig A. Fletcher; Erin Shirk; Henry Sun; M. Anna Kowalska; Karen Fox-Talbot; David J. Sullivan; Fidel Zavala; Craig N. Morrell

Cerebral malaria (CM) is a major complication of Plasmodium falciparum infection in children. The pathogenesis of CM involves vascular inflammation, immune stimulation, and obstruction of cerebral capillaries. Platelets have a prominent role in both immune responses and vascular obstruction. We now demonstrate that the platelet-derived chemokine, platelet factor 4 (PF4)/CXCL4, promotes the development of experimental cerebral malaria (ECM). Plasmodium-infected red blood cells (RBCs) activated platelets independently of vascular effects, resulting in increased plasma PF4. PF4 or chemokine receptor CXCR3 null mice had less severe ECM, including decreased T cell recruitment to the brain, and platelet depletion or aspirin treatment reduced the development of ECM. We conclude that Plasmodium-infected RBCs can directly activate platelets, and platelet-derived PF4 then contributes to immune activation and T cell trafficking as part of the pathogenesis of ECM.


Infection and Immunity | 2006

Plasmodium falciparum-Infected Erythrocytes Increase Intercellular Adhesion Molecule 1 Expression on Brain Endothelium through NF-κB

Abhai K. Tripathi; David J. Sullivan; Monique F. Stins

ABSTRACT Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-IRBC) in postcapillary brain endothelium is a hallmark of cerebral malaria (CM) pathogenesis. There is a correlation between adherent Pf-IRBC and increased expression of intercellular cell adhesion molecule 1 (ICAM-1), which is also a receptor for Pf-IRBC on human brain microvascular endothelial cells (HBMEC). The underlying mechanism for the increased ICAM-1 expression has not been clearly defined. Therefore, we investigated the mechanisms of ICAM-1 expression on isolated HBMEC after exposure to Pf-IRBC. Ultrastructural characterization of the model confirmed that there was attachment through both Pf-IRBC knobs and HBMEC microvillus protrusions. Pf-IRBC induced a dose- and time-dependent increase in ICAM-1 expression on HBMEC that was specific for human brain endothelium and was not observed with human umbilical vein endothelium. Involvement of both membrane-associated Pf-IRBC proteins and parasite-derived soluble factors with the increase in ICAM-1 expression was demonstrated by surface trypsinization and fractionation. Pf-IRBC exposure induced nuclear translocation of NF-κB in HBMEC, which was linked to ICAM-1 expression, as shown by use of specific inhibitors of the transcription factor NF-κB and immunocytochemistry. In addition, inhibition of reactive oxygen species decreased Pf-IRBC-induced ICAM-1 expression on HBMEC. Parasite-induced ICAM-1 expression explains the localization of this molecule on brain endothelium in postmortem CM brain samples. By increasing ICAM-1 expression, Pf-IRBC may increase their sequestration, thereby perpetuating CM.


PLOS Pathogens | 2014

Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities

Jose L. Ramirez; Sarah M. Short; Ana C. Bahia; Raúl G. Saraiva; Yuemei Dong; Seokyoung Kang; Abhai K. Tripathi; Godfree Mlambo; George Dimopoulos

Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquitos vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.


The Journal of Infectious Diseases | 2007

Plasmodium falciparum—Infected Erythrocytes Decrease the Integrity of Human Blood-Brain Barrier Endothelial Cell Monolayers

Abhai K. Tripathi; David J. Sullivan; Monique F. Stins

BACKGROUND Central to the pathologic progression of human cerebral malaria (CM) is sequestration of Plasmodium falciparum-infected red blood cells (Pf-IRBCs) to the blood-brain barrier (BBB) endothelium. The molecular interactions between Pf-IRBCs and the BBB endothelium and their implications for barrier function are unclear. METHODS The effects of Pf-IRBCs on the integrity of the BBB were assessed by electrical cell substrate sensing and by transendothelial electrical resistance measurements in an in vitro human BBB model. In addition, Pf-IRBCs were subfractionated and treated with trypsin, artemisinin, or brefeldin A. RESULTS Pf-IRBCs, but not normal red blood cells, significantly decreased BBB resistance. Subfractionation showed that both membrane-associated and soluble Pf-IRBC factors mediate the decrease in BBB resistance. Trypsin treatment significantly reduced Pf-IRBC binding but not their ability to decrease electrical resistance. Likewise, P. falciparum isolates with increased binding to human brain microvascular endothelial cells did not alter the electrical resistance response. Soluble factors from Pf-IRBC culture supernatant decreased resistance by 50%-70% and precipitated with 40% ammonium sulfate saturation. Brefeldin-A partially blocked the ability of Pf-IRBCs to reduce resistance. CONCLUSION The results suggest that, in CM, trypsin-resistant membrane components and soluble factors of Pf-IRBCs contribute to the impedance of BBB integrity in a multistep and multifactorial process.


Blood | 2009

Plasmodium falciparum Infected Erythrocytes Induce NF-κB Regulated Inflammatory Pathways in Human Cerebral Endothelium

Abhai K. Tripathi; Wei Sha; Vladimir Shulaev; Monique F. Stins; David J. Sullivan

Cerebral malaria is a severe multifactorial condition associated with the interaction of high numbers of infected erythrocytes to human brain endothelium without invasion into the brain. The result is coma and seizures with death in more than 20% of cases. Because the brain endothelium is at the interface of these processes, we investigated the global gene responses of human brain endothelium after the interaction with Plasmodium falciparum-infected erythrocytes with either high- or low-binding phenotypes. The most significantly up-regulated transcripts were found in gene ontology groups comprising the immune response, apoptosis and antiapoptosis, inflammatory response, cell-cell signaling, and signal transduction and nuclear factor kappaB (NF-kappaB) activation cascade. The proinflammatory NF-kappaB pathway was central to the regulation of the P falciparum-modulated endothelium transcriptome. The proinflammatory molecules, for example, CCL20, CXCL1, CXCL2, IL-6, and IL-8, were increased more than 100-fold, suggesting an important role of blood-brain barrier (BBB) endothelium in the innate defense during P falciparum-infected erythrocyte (Pf-IRBC) sequestration. However, some of these diffusible molecules could have reversible effects on brain tissue and thus on neurologic function. The inflammatory pathways were validated by direct measurement of proteins in brain endothelial supernatants. This study delineates the strong inflammatory component of human brain endothelium contributing to cerebral malaria.


Molecular & Cellular Proteomics | 2014

Sex-partitioning of the Plasmodium falciparum Stage V Gametocyte Proteome Provides Insight into falciparum-specific Cell Biology

Dingyin Tao; Ceereena Ubaida-Mohien; Derrick K. Mathias; Jonas G. King; Rebecca Pastrana-Mena; Abhai K. Tripathi; Ilana Goldowitz; David R. Graham; Eli L. Moss; Matthias Marti; Rhoel R. Dinglasan

One of the critical gaps in malaria transmission biology and surveillance is our lack of knowledge about Plasmodium falciparum gametocyte biology, especially sexual dimorphic development and how sex ratios that may influence transmission from the human to the mosquito. Dissecting this process has been hampered by the lack of sex-specific protein markers for the circulating, mature stage V gametocytes. The current evidence suggests a high degree of conservation in gametocyte gene complement across Plasmodium, and therefore presumably for sex-specific genes as well. To better our understanding of gametocyte development and subsequent infectiousness to mosquitoes, we undertook a Systematic Subtractive Bioinformatic analysis (filtering) approach to identify sex-specific P. falciparum NF54 protein markers based on a comparison with the Dd2 strain, which is defective in producing males, and with syntenic male and female proteins from the reanalyzed and updated P. berghei (related rodent malaria parasite) gametocyte proteomes. This produced a short list of 174 male- and 258 female-enriched P. falciparum stage V proteins, some of which appear to be under strong diversifying selection, suggesting ongoing adaptation to mosquito vector species. We generated antibodies against three putative female-specific gametocyte stage V proteins in P. falciparum and confirmed either conserved sex-specificity or the lack of cross-species sex-partitioning. Finally, our study provides not only an additional resource for mass spectrometry-derived evidence for gametocyte proteins but also lays down the foundation for rational screening and development of novel sex-partitioned protein biomarkers and transmission-blocking vaccine candidates.


PLOS ONE | 2014

Gametocytocidal screen identifies novel chemical classes with Plasmodium falciparum transmission blocking activity.

Natalie G. Sanders; David J. Sullivan; Godfree Mlambo; George Dimopoulos; Abhai K. Tripathi

Discovery of transmission blocking compounds is an important intervention strategy necessary to eliminate and eradicate malaria. To date only a small number of drugs that inhibit gametocyte development and thereby transmission from the mosquito to the human host exist. This limitation is largely due to a lack of screening assays easily adaptable to high throughput because of multiple incubation steps or the requirement for high gametocytemia. Here we report the discovery of new compounds with gametocytocidal activity using a simple and robust SYBR Green I- based DNA assay. Our assay utilizes the exflagellation step in male gametocytes and a background suppressor, which masks the staining of dead cells to achieve healthy signal to noise ratio by increasing signal of viable parasites and subtracting signal from dead parasites. By determining the contribution of exflagellation to fluorescent signal and using appropriate cutoff values, we were able to screen for gametocytocidal compounds. After assay validation and optimization, we screened an FDA approved drug library of approximately 1500 compounds, as well as the 400 compound MMV malaria box and identified 44 gametocytocidal compounds with sub to low micromolar IC50s. Major classes of compounds with gametocytocidal activity included quaternary ammonium compounds with structural similarity to choline, acridine-like compounds similar to quinacrine and pyronaridine, as well as antidepressant, antineoplastic, and anthelminthic compounds. Top drug candidates showed near complete transmission blocking in membrane feeding assays. This assay is simple, reproducible and demonstrated robust Z-factor values at low gametocytemia levels, making it amenable to HTS for identification of novel and potent gametocytocidal compounds.

Collaboration


Dive into the Abhai K. Tripathi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Godfree Mlambo

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Gary H. Posner

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjai Kumar

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan T. Mott

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge