Abhay K. Singh
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abhay K. Singh.
Journal of Bacteriology | 2004
Hong Li; Abhay K. Singh; Lauren M. McIntyre; Louis A. Sherman
We utilized a full genome cDNA microarray to identify the genes that comprise the peroxide stimulon in the cyanobacterium Synechocystis sp. strain PCC 6803. We determined that a gene (slr1738) encoding a protein similar to PerR in Bacillus subtilis was induced by peroxide. We constructed a PerR knockout strain and used it to help identify components of the PerR regulon, and we found that the regulatory properties were consistent with the hypothesis that PerR functions as a repressor. This effort was guided by finding putative PerR boxes in positions upstream of specific genes and by careful statistical analysis. PerR and sll1621 (ahpC), which codes for a peroxiredoxin, share a divergent promoter that is regulated by PerR. We found that isiA, encoding a Chl protein that is induced under low-iron conditions, was strongly induced by a short-term peroxide stress. Other genes that were strongly induced by peroxide included sigD, sigB, and genes encoding peroxiredoxins and Dsb-like proteins that have not been studied yet in this strain. A gene (slr1894) that encoded a protein similar to MrgA in B. subtilis was upregulated by peroxide, and a strain containing an mrgA knockout mutation was highly sensitive to peroxide. A number of genes were downregulated, including key genes in the chlorophyll biosynthesis pathway and numerous regulatory genes, including those encoding histidine kinases. We used PerR mutants and a thioredoxin mutant (TrxA1) to study differential expression in response to peroxide and determined that neither PerR nor TrxA1 is essential for the peroxide protective response.
Plant Physiology | 2003
Abhay K. Singh; Lauren M. McIntyre; Louis A. Sherman
A full-genome microarray of the (oxy)photosynthetic cyanobacterium Synechocystis sp. PCC 6803 was used to identify genes that were transcriptionally regulated by growth in iron (Fe)-deficient versus Fe-sufficient media. Transcript accumulation for 3,165 genes in the genome was analyzed using an analysis of variance model that accounted for slide and replicate (random) effects and dye (a fixed) effect in testing for differences in the four time periods. We determined that 85 genes showed statistically significant changes in the level of transcription (P ≤ 0.05/3,165 = 0.0000158) across the four time points examined, whereas 781 genes were characterized as interesting (P ≤ 0.05 but greater than 0.0000158; 731 of these had a fold change >1.25×). The genes identified included those known previously to be Fe regulated, such as isiA that encodes a novel chlorophyll-binding protein responsible for the pigment characteristics of low-Fe (LoFe) cells. ATP synthetase and phycobilisome genes were down-regulated in LoFe, and there were interesting changes in the transcription of genes involved in chlorophyll biosynthesis, in photosystem I and II assembly, and in energy metabolism. Hierarchical clustering demonstrated that photosynthesis genes, as a class, were repressed in LoFe and induced upon the re-addition of Fe. Specific regulatory genes were transcriptionally active in LoFe, including two genes that show homology to plant phytochromes (cph1 and cph2). These observations established the existence of a complex network of regulatory interactions and coordination in response to Fe availability.
Molecular & Cellular Proteomics | 2010
Kimberly M. Wegener; Abhay K. Singh; Jon M. Jacobs; Thanura R. Elvitigala; Eric A. Welsh; Nir Keren; Marina A. Gritsenko; Bijoy K. Ghosh; David G. Camp; Richard D. Smith; Himadri B. Pakrasi
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a large-scale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen.
Journal of Biological Chemistry | 2008
Abhay K. Singh; Maitrayee Bhattacharyya-Pakrasi; Himadri B. Pakrasi
The evolution of oxygenic photosynthesis in cyanobacteria nearly three billion years ago provided abundant reducing power and facilitated the elaboration of numerous oxygen-dependent reactions in our biosphere. Cyanobacteria contain an internal thylakoid membrane system, the site of photosynthesis, and a typical Gram-negative envelope membrane system. Like other organisms, the extracytoplasmic space in cyanobacteria houses numerous cysteine-containing proteins. However, the existence of a biochemical system for disulfide bond formation in cyanobacteria remains to be determined. Extracytoplasmic disulfide bond formation in non-photosynthetic organisms is catalyzed by coordinated interaction between two proteins, a disulfide carrier and a disulfide generator. Here we describe a novel gene, SyndsbAB, required for disulfide bond formation in the extracytoplasmic space of cyanobacteria. The SynDsbAB orthologs are present in most cyanobacteria and chloroplasts of higher plants with fully sequenced genomes. The SynDsbAB protein contains two distinct catalytic domains that display significant similarity to proteins involved in disulfide bond formation in Escherichia coli and eukaryotes. Importantly, SyndsbAB complements E. coli strains defective in disulfide bond formation. In addition, the activity of E. coli alkaline phosphatase localized to the periplasm of Synechocystis 6803 is dependent on the function of SynDsbAB. Deletion of SyndsbAB in Synechocystis 6803 causes significant growth impairment under photoautotrophic conditions and results in hyper-sensitivity to dithiothreitol, a reductant, whereas diamide, an oxidant had no effect on the growth of the mutant strains. We conclude that SynDsbAB is a critical protein for disulfide bond formation in oxygenic photosynthetic organisms and required for their optimal photoautotrophic growth.
Plant Physiology | 2008
Abhay K. Singh; Thanura R. Elvitigala; Maitrayee Bhattacharyya-Pakrasi; Rajeev Aurora; Bijoy K. Ghosh; Himadri B. Pakrasi
Light drives the production of chemical energy and reducing equivalents in photosynthetic organisms required for the assimilation of essential nutrients. This process also generates strong oxidants and reductants that can be damaging to the cellular processes, especially during absorption of excess excitation energy. Cyanobacteria, like other oxygenic photosynthetic organisms, respond to increases in the excitation energy, such as during exposure of cells to high light (HL) by the reduction of antenna size and photosystem content. However, the mechanism of how Synechocystis sp. PCC 6803, a cyanobacterium, maintains redox homeostasis and coordinates various metabolic processes under HL stress remains poorly understood. In this study, we have utilized time series transcriptome data to elucidate the global responses of Synechocystis to HL. Identification of differentially regulated genes involved in the regulation, protection, and maintenance of redox homeostasis has offered important insights into the optimized response of Synechocystis to HL. Our results indicate a comprehensive integrated homeostatic interaction between energy production (photosynthesis) and energy consumption (assimilation of carbon and nitrogen). In addition, measurements of physiological parameters under different growth conditions showed that integration between the two processes is not a consequence of limitations in the external carbon and nitrogen levels available to the cells. We have also discovered the existence of a novel glycosylation pathway, to date known as an important nutrient sensor only in eukaryotes. Up-regulation of a gene encoding the rate-limiting enzyme in the hexosamine pathway suggests a regulatory role for protein glycosylation in Synechocystis under HL.
Journal of Bacteriology | 2005
Abhay K. Singh; Louis A. Sherman
The deletion of a gene coding for a histidine kinase (sll0750, Hik8) in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 resulted in a conditional lethal phenotype with a pleiotropic effect on the expression of genes involved in glucose metabolism. This mutant had comparable doubling times to wild type (WT) in continuous-light-grown photoautotrophic and mixotrophic cultures, whereas it grew poorly under mixotrophic conditions with different light and dark cycles. Growth was completely stopped, and cells eventually died, when the light duration was less than 6 h on a 24-h regimen. Northern blot analysis demonstrated that steady-state transcript levels of genes encoding key enzymes of glycolysis, gluconeogenesis, the oxidative pentose phosphate pathway, and glycogen metabolism were significantly altered in a strain with mutant hik8 (Deltahik8) grown with or without glucose. In some cases, differential expression was dependent on growth conditions (photoautotrophic versus mixotrophic). The enzyme activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and phosphofructokinase were significantly reduced in Deltahik8 compared to WT. Glycogen determination indicated that Deltahik8 accumulated glycogen under mixotrophic conditions but was unable to utilize these reserves for heterotrophic growth. The results suggest that the loss of gap1 transcription in the absence of Hik8 was the key factor that rendered cells unable to catabolize glucose and grow heterotrophically. Additionally, the transcript levels of the phytochrome gene (cph1) and its cotranscribed response regulator gene (rcp1) were significantly reduced and its dark inducibility was lost in Deltahik8. The results demonstrated that Hik8 plays an important role in glucose metabolism and is necessary for heterotrophic growth.
BMC Systems Biology | 2010
Abhay K. Singh; Thanura R. Elvitigala; Jeffrey C. Cameron; Bijoy K. Ghosh; Maitrayee Bhattacharyya-Pakrasi; Himadri B. Pakrasi
BackgroundCyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis. They play significant roles in global biogeochemical cycles and carbon sequestration, and have recently been recognized as potential vehicles for production of renewable biofuels. Synechocystis sp. PCC 6803 has been extensively used as a model organism for cyanobacterial studies. DNA microarray studies in Synechocystis have shown varying degrees of transcriptome reprogramming under altered environmental conditions. However, it is not clear from published work how transcriptome reprogramming affects pre-existing networks of fine-tuned cellular processes.ResultsWe have integrated 163 transcriptome data sets generated in response to numerous environmental and genetic perturbations in Synechocystis. Our analyses show that a large number of genes, defined as the core transcriptional response (CTR), are commonly regulated under most perturbations. The CTR contains nearly 12% of Synechocystis genes found on its chromosome. The majority of genes in the CTR are involved in photosynthesis, translation, energy metabolism and stress protection. Our results indicate that a large number of differentially regulated genes identified in most reported studies in Synechocystis under different perturbations are associated with the general stress response. We also find that a majority of genes in the CTR are coregulated with 25 regulatory genes. Some of these regulatory genes have been implicated in cellular responses to oxidative stress, suggesting that reactive oxygen species are involved in the regulation of the CTR. A Bayesian network, based on the regulation of various KEGG pathways determined from the expression patterns of their associated genes, has revealed new insights into the coordination between different cellular processes.ConclusionWe provide here the first integrative analysis of transcriptome data sets generated in a cyanobacterium. This compilation of data sets is a valuable resource to researchers for all cyanobacterial gene expression related queries. Importantly, our analysis provides a global description of transcriptional reprogramming under different perturbations and a basic framework to understand the strategies of cellular adaptations in Synechocystis.
Plant Physiology | 2009
Abhay K. Singh; Maitrayee Bhattacharyya-Pakrasi; Thanura R. Elvitigala; Bijoy K. Ghosh; Rajeev Aurora; Himadri B. Pakrasi
Photosynthetic organisms experience changes in light quantity and light quality in their natural habitat. In response to changes in light quality, these organisms redistribute excitation energy and adjust photosystem stoichiometry to maximize the utilization of available light energy. However, the response of other cellular processes to changes in light quality is mostly unknown. Here, we report a systematic investigation into the adaptation of cellular processes in Synechocystis species PCC 6803 to light that preferentially excites either photosystem II or photosystem I. We find that preferential excitation of photosystem II and photosystem I induces massive reprogramming of the Synechocystis transcriptome. The rewiring of cellular processes begins as soon as Synechocystis senses the imbalance in the excitation of reaction centers. We find that Synechocystis utilizes the cyclic photosynthetic electron transport chain for ATP generation and a major part of the respiratory pathway to generate reducing equivalents and carbon skeletons during preferential excitation of photosystem I. In contrast, cytochrome c oxidase and photosystem I act as terminal components of the photosynthetic electron transport chain to produce sufficient ATP and limited amounts of NADPH and reduced ferredoxin during preferential excitation of photosystem II. To overcome the shortage of NADPH and reduced ferredoxin, Synechocystis preferentially activates transporters and acquisition pathways to assimilate ammonia, urea, and arginine over nitrate as a nitrogen source. This study provides a systematic analysis of cellular processes in cyanobacteria in response to preferential excitation and shows that the cyanobacterial cell undergoes significant adjustment of cellular processes, many of which were previously unknown.
Photosynthesis Research | 2007
Abhay K. Singh; Louis A. Sherman
The isiA gene encodes a protein that is similar to the Photosystem II chlorophyll-binding protein CP43, but lacks the entire large lumenal loop of over 100 amino acids. What is the function of this IsiA protein? Research on IsiA has traveled a long and interesting path since it was first discovered by its large accumulation during growth under iron-limited conditions. What appeared to be a simple on–off switch for isiA based on iron concentration has developed into a much richer and more intriguing set of possibilities that involve its expression and function. We provide an overview of isiA transcriptional regulation by many environmental factors and its proposed functions. We also describe the response to oxidative stress by cells that lack the IsiA protein. It is now clear that isiA expression can be de-repressed in the presence of normal iron levels and that the regulatory mechanisms can be linked to the inter-relationship between iron homeostasis and oxidative stress. The de facto transcriptional control of isiA expression has expanded to include regulation at both the transcriptional and post-transcriptional levels.
Journal of Bacteriology | 2000
Abhay K. Singh; Louis A. Sherman
We describe the use of a method called differential expression using customized amplification library (DECAL) to study the global changes in gene expression in iron-deficient versus iron-reconstituting cells of Synechocystis sp. strain PCC 6803. We identified a number of genes, such as isiA, idiA, psbA, cpcG, and slr0374, whose expression either increased or decreased in response to iron availability. Further analysis led to the identification of additional genes related to those identified by DECAL (e.g., psbC, psbO, psaA, apcABC, cpcBAC1C2D, and nblA) that were differentially regulated by iron availability. Expression of cpcG, psbC, psbO, psaA, apcABC, and cpcBAC1C2D increased, whereas that of isiA, idiA, nblA, psbA, and slr0374 decreased, in iron-reconstituting cells. S1 nuclease protection studies showed that increased transcript levels of psbA in iron-deficient cells was due to the increased expression of both psbA2 and psbA3 genes, although the steady-state level of psbA2 remained higher than that of psbA3.