Abhijit P. Deshpande
Indian Institute of Technology Madras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abhijit P. Deshpande.
Journal of Applied Polymer Science | 2000
Abhijit P. Deshpande; M. Bhaskar Rao; C. Lakshmana Rao
Few investigations have been carried out with bamboo fibers despite its high strength, biodegradability, and low cost. The overall objective of this work was to investigate fiber extraction from bamboo and the use of these bamboo fibers as reinforcement in polymeric composites. A combination of chemical and mechanical methods was used for the extraction of bamboo fibers. Conventional methods of compression molding technique (CMT) and roller mill technique (RMT) were explored for the mechanical separation. Fiber population from both the techniques were characterized. Mechanical properties of the fibers also were evaluated. Bamboo fibers obtained from CMT and RMT were used to make unidirectional composites of polyester. High values of tensile strength were observed in all the composites. The predominant mode of failure for the composite was shown to be the cracking of the fiber–matrix interface. Quantitative results from this study will be useful for further and more accurate design of bamboo reinforced composite materials.
Archive | 2010
Abhijit P. Deshpande; J. Murali Krishnan; P. B. Sunil Kumar
Background.- Non-Newtonian Fluids: An Introduction.- Fundamentals of Rheology.- Mechanics of Liquid Mixtures.- Rheology.- Oscillatory Shear Rheology for Probing Nonlinear Viscoelasticity of Complex Fluids: Large Amplitude Oscillatory Shear.- PIV Techniques in Experimental Measurement of Two Phase (Gas-Liquid) Systems.- An Introduction to Hydrodynamic Stability.- Applications.- Statics and Dynamics of Dilute Polymer Solutions.- Polymer Rheology.- Active Matter.- Mathematical Modelling of Granular Materials.
Journal of Fluids Engineering-transactions of The Asme | 2006
S. Sriram; Abhijit P. Deshpande; S. Pushpavanam
The time-dependent fluid flow in a square cavity was studied using model fluids of glycerol-water solution at different frequencies and amplitudes of motion of the top plate. The range of Reynolds numbers in our investigation varied from 5 to 3700. The experiments were carried out in a square cavity with a periodically driven lid, and planar velocity measurements were obtained using particle image velocimetry. The flow was driven by moving the top surface of the cavity in a simple harmonic motion. The aspect ratio, defined as the ratio of cavity length to the cavity height, is unity. The ratio of cavity spanwise width to the length of the cavity is 0.2. The temporal variation of velocity at fixed locations in the cavity exhibits a periodic variation. The basic frequency of the fluid motion at a point in the flow domain was observed to be the same as that of plate motion for low Reynolds number Re. However, existence of dominant secondary frequencies was observed along the central vertical plane. The velocity variation as a function of time at a fixed position and the velocity profiles along horizontal and vertical planes are also quantitatively described. These were compared to computational fluid dynamics (CFD) simulations based on the finite volume technique. Comprehensive details of the flow as a function of Reynolds number are analyzed. The evolution of secondary vortices at different plate positions as a function of Reynolds number is also presented. The planar velocity measurements acquired are indicative of the flow behavior in a periodically driven cavity with a narrow span width even at high Re. At very low Re, the flow throughout the periodically driven cavity qualitatively resembles the classical steady lid-driven cavity flow. At high Re, the entire cavity is occupied with multiple vortices. The qualitative features of the bulk flow observed are valid even for cavities with infinite span width. DOI: 10.1115/1.2173289
Archive | 2010
Abhijit P. Deshpande
Linear and non-linear rheological responses of complex fluids are of great interest. Oscillatory techniques are commonly used to analyze the complex fluid rheological behavior. In this chapter, the approach based on large amplitude oscillatory shear (LAOS) is reviewed. Initially, oscillatory shear based on small strain amplitudes is presented along with a brief discussion on relaxation time spectrum. Subsequently, key observable features of LAOS are shown with experimental observations on selected materials. Various applications for which LAOS is being investigated have been described through these examples. Complex fluids such as polymer solutions and melts, emulsions, blends, biological gels, micellar solutions, etc. are being investigated for their non-linear response at large amplitudes during LAOS. In addition to the general response during LAOS, specific material functions being proposed in the literature are discussed. Finally, an example of bulk oscillatory flow is discussed in the context of LAOS behavior of complex fluids.
Soft Matter | 2010
Snigdha Thakur; K. R. Prathyusha; Abhijit P. Deshpande; Mohamed Laradji; P. B. Sunil Kumar
We present a coarse-grained model for the dynamics of living polymer solutions which explicitly includes solvent hydrodynamics. We show that lamellar and columnar structures emerge when the solution is subjected to simple shear. In the absence of shear, the model predicts a fluid–gel transition as a function of polymer concentration. At a threshold concentration, the self-intermediate scattering function indicates Zimm-like dynamics at large wave vectors and diffusive dynamics at small wave vectors. The kinetics of scission and recombination clearly demonstrates the existence of mean field and diffusion controlled regimes for the dynamics of living polymers at low and high concentrations respectively.
Road Materials and Pavement Design | 2013
A. Padmarekha; Kanmani Chockalingam; U. Saravanan; Abhijit P. Deshpande; J. Murali Krishnan
The current binder testing protocols in the oscillatory domain use peak stress–strain data for material characterisation. The viscoelastic linearity limits are also based on such data. For a rigorous characterisation of the viscoelastic response of the binder, it is necessary that one records the complete waveform of the material response during oscillatory testing. This paper reports the waveform recorded for unmodified, crumb rubber modified and Styrelf modified bitumen during oscillatory loading. The waveform was collected for strain amplitudes of 1% and 5% at 30°C, 40°C and 50°C temperature. The linear and nonlinear behaviour of the material was studied using the geometrical symmetry of Lissajous plots. It was found that the material response was nonlinear. An appropriate frame invariant nonlinear constitutive model was used to predict the waveform response of all the binders tested.
Road Materials and Pavement Design | 2012
S. P. Atul Narayan; K. A. Venkata Nag; J. Murali Krishnan; Abhijit P. Deshpande; K. R. Rajagopal
This paper presents the results of a set of transient experiments conducted on asphalt binders that serve to highlight the nonlinearity of the viscoelastic response of asphalt binders. Two grades of binders were used in this study. A transient test that combines both creep and stress relaxation tests was conducted using a dynamic shear rheometer at several loading conditions and at different temperatures. The acquired experimental data was satisfactorily fit using a nonlinear six-parameter viscoelastic model.
Journal of Colloid and Interface Science | 2017
Pooja Bansal; Abhijit P. Deshpande; Madivala G. Basavaraj
Hetero-aggregation refers to aggregation of particles that are not identical i.e. particles of different physical-chemical properties. The investigation of this phenomenon is important because of the fascinating structures that can be formed and their application in several fields including the synthesis of porous materials and particle stabilized emulsions. We report an experimental study of hetero-aggregation behaviour of oppositely charged nanoparticles of similar size. In this study, the hetero-aggregation phenomenon is investigated using a combination of visual observation, zeta potential measurements, dynamic light scattering, scanning electron microscopy and rheology measurements. We report details of aggregate size, structure, flow properties to provide understanding of hetero-aggregation by a careful examination of different phases formed upon mixing oppositely charged particles. The experiments were carried out at different mixing fraction (defined as the mass of positive particle in the dispersion divided by total mass of particles in the dispersion) varying from 0 to 1 with total concentration of particles ranging from 0.05 to 30wt% (0.023-13.82vol%). At low total particle concentration, four different states of the mixture were observed which includes sediment with turbid supernatant, sediment with clear supernatant, turbid sample with no sediment and a clear dispersion. However, at higher concentration above ∼7.5wt% (3.45vol%), the mixture of oppositely charged particles form - a particulate gel with turbid supernatant at low mixing fraction (from 0.1 to 0.3), a solid-like gel at intermediate mixing fraction (from ∼0.3 to 0.7) and a turbid sample at high mixing fractions from 0.7 to 1.0.
ChemPhysChem | 2016
Samala Murali Mohan Reddy; Pramod Dorishetty; Abhijit P. Deshpande; Ganesh Shanmugam
Although a few Fmoc-functionalised amino acids (Fmoc-AA) are capable of forming hydrogels, the exact levels of hydrophobicity, hydrogen bonding, and ionic nature of the Fmoc-AA gelator required for hydrogel formation remains uncertain. Here, the role of hydrophobicity of amino acid side chain, particularly in the formation of hydrogel, was studied by using Fmoc-norleucine (Fmoc-Nle) and its simple sulfur analogues such as Fmoc-methionine (Fmoc-M) in which the γCH2 of Fmoc-Nle is replaced by sulfur. Results indicate that Fmoc-M forms thermally reversible hydrogels in water (pH ca. 6.8), whereas Fmoc-Nle fails to display any gelation under similar conditions. The result suggests that substitution of the sulfur atom likely reduces the hydrophobicity of the alkyl side chain in Fmoc-Nle to the optimum level, which is sufficient to induce supramolecular hydrogelation in Fmoc-M. The difference in the self-association behaviour of Fmoc-M and Fmoc-Nle emphasise the importance of weak noncovalent interaction between side chains (in addition to the hydrogen-bond and aromatic interactions) to stabilise supramolecular self-assembly of Fmoc-functionalised compounds. The current observations provide a lead to the design of new sulfur-based low molecular weight gelators for various potential applications.
Langmuir | 2017
Samala Murali Mohan Reddy; Pramod Dorishetty; George Augustine; Abhijit P. Deshpande; Niraikulam Ayyadurai; Ganesh Shanmugam
Charge-transfer (CT) gel materials obtained from low-molecular-weight (LMW) compounds through a supramolecular self-assembly approach have received fascinating attention by many researchers because of their interesting material property and potential applications. However, most of the CT gel materials constructed were of organogels while the construction of CT gels in the form of a hydrogel is a challenge because of the solubility issue in water, which considerably limits the use of CT hydrogels. Herein, for the first time, we report a new LMW gelator [Nα-(fluorenylmethoxycarbonyl)-Nε-(δ-butyric-1-pyrenyl)-l-lysine, (FmKPy)], composed of two functional moieties such as fluorenylmethoxycarbonyl and pyrene, which not only parade both hydro and organo (ambidextrous) supramolecular gel formation but also exhibit CT ambidextrous gels when mixed with an electron acceptor such as 2,4,7-trinitro-9-fluorenone (TNF). This finding is significant as the established CT organogelator in the literature did not form an organogel in the absence of an electron acceptor or lose their gelation property upon the addition of the acceptor. CT between pyrene and TNF was confirmed by the color change as well as the appearance of the CT band in the visible region of the absorption spectrum. CT between FmKPy and TNF was supported by the solvent dilution method using tetrahydrofuran as the gel breaker and pyrene fluorescence quenching in the case compound containing pyrene and TNF. The morphology of FmKPy ambidextrous gels indicates the fibrous nature while the self-assembled structure is primarily stabilized by π-π stacking among fluorenyl and pyrenyl moieties and hydrogen bonding between amide groups. The FmKPy-TNF CT ambidextrous gel retains the fibrous nature; however, the size of the fibers changed. In FmKPy-TNF CT gels, TNF is intercalated between pyrene moieties in the self-assembled structure as confirmed by fluorescence quenching and powder X-ray diffraction. The FmKPy ambidextrous gel exhibits significant properties such as low minimum gelation concentration (MGC), thixotropic nature, pH stimuli response, and high thermal stability. Upon the addition of TNF, the FmKPy-TNF CT ambidextrous gel maintains all these properties except MGC which increased for FmKPy-TNF. Because pyrene-based LMW organogels have been developed widely for many applications while their hydrogels were limited, the current finding of the pyrene-based ambidextrous fluorescent gel with the CT property provides a wide opportunity to use FmKPy as a soft material maker and also for potential applications in fields like surface coating, three-dimensional printing, and so forth.