P. B. Sunil Kumar
Indian Institute of Technology Madras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. B. Sunil Kumar.
Physical Review Letters | 2004
Mohamed Laradji; P. B. Sunil Kumar
The dynamics of phase separation in multicomponent bilayer fluid vesicles is investigated by means of large-scale dissipative particle dynamics. The model explicitly accounts for solvent particles, thereby allowing for the very first numerical investigation of the effects of hydrodynamics and area-to-volume constraints. We observed regimes corresponding to coalescence of flat patches, budding and vesiculation, and coalescence of caps. We point out that the area-to-volume constraint has a strong influence on crossovers between these regimes.
Journal of Chemical Physics | 2005
Mohamed Laradji; P. B. Sunil Kumar
A systematic investigation of the phase-separation dynamics in self-assembled binary fluid vesicles and open membranes is presented. We use large-scale dissipative particle dynamics to explicitly account for solvent, thereby allowing for numerical investigation of the effects of hydrodynamics and area-to-volume constraints. In the case of asymmetric lipid composition, we observed regimes corresponding to coalescence of flat patches, budding, vesiculation, and coalescence of caps. The area-to-volume constraint and hydrodynamics have a strong influence on these regimes and the crossovers between them. In the case of symmetric mixtures, irrespective of the area-to-volume ratio, we observed a growth regime with an exponent of 1/2. The same exponent is also found in the case of open membranes with symmetric composition.
Soft Matter | 2009
Luis A. Bagatolli; P. B. Sunil Kumar
Recent developments in biology seems to indicate that the Fluid Mosaic model of membrane proposed by Singer and Nicolson, with lipid bilayer functioning only as medium to support protein machinery, may be too simple to be realistic. Many protein functions are now known to depend on the composition of the membrane. Experiments indicate that biomembranes of eukaryotic cells may be laterally organized into small nanoscopic domains. This inplane organization is expected to play an important role in a variety of physiological functions such as signaling, recruitment of specific proteins and endocytosis. However, mainly because of their complexity, the precise in-plane organization of lipids and proteins and their stability in biological membranes remain difficult to elucidate. This has reiterated the importance of understanding the equilibrium phase behavior and the kinetics of fluid multicomponent lipid membranes. Current increase in interest in the domain formation in multicomponent membranes also stems from the experiments demonstrating liquid ordered-liquid disordered coexistence in mixtures of lipids and cholesterol and the success of several computational models in predicting their behavior. This review includes basic foundations on membrane model systems and experimental approaches applied in the membrane research area, stressing on recent advances in the experimental and computational techniques.
Physical Review Letters | 1998
P. B. Sunil Kumar; Madan Rao
We study the shape dynamics of a two-component fluid membrane, using a dynamical triangulation Monte Carlo simulation and a Langevin description. Phase separation induces morphology changes depending on the lateral mobility of the lipids. When the mobility is large, the familiar labyrinthine spinodal pattern is linearly unstable to undulation fluctuations and breaks up into buds, which move towards each other and merge. For low mobilities, the membrane responds elastically at short times, preferring to buckle locally, resulting in a crinkled surface.
Archive | 2010
Abhijit P. Deshpande; J. Murali Krishnan; P. B. Sunil Kumar
Background.- Non-Newtonian Fluids: An Introduction.- Fundamentals of Rheology.- Mechanics of Liquid Mixtures.- Rheology.- Oscillatory Shear Rheology for Probing Nonlinear Viscoelasticity of Complex Fluids: Large Amplitude Oscillatory Shear.- PIV Techniques in Experimental Measurement of Two Phase (Gas-Liquid) Systems.- An Introduction to Hydrodynamic Stability.- Applications.- Statics and Dynamics of Dilute Polymer Solutions.- Polymer Rheology.- Active Matter.- Mathematical Modelling of Granular Materials.
Biophysical Journal | 2013
N. Ramakrishnan; P. B. Sunil Kumar; John Hjort Ipsen
The shapes of cell membranes are largely regulated by membrane-associated, curvature-active proteins. Herein, we use a numerical model of the membrane, recently developed by us, with elongated membrane inclusions possessing spontaneous directional curvatures that could be different along, and perpendicular to, the membranes long axis. We show that, due to membrane-mediated interactions, these curvature-inducing membrane-nematogens can aggregate spontaneously, even at low concentrations, and change the local shape of the membrane. We demonstrate that for a large group of such inclusions, where the two spontaneous curvatures have equal sign, the tubular conformation and sometimes the sheet conformation of the membrane are the common equilibrium shapes. We elucidate the factors necessary for the formation of these protein lattices. Furthermore, the elastic properties of the tubes, such as their compressional stiffness and persistence length, are calculated. Finally, we discuss the possible role of nematic disclination in capping and branching of the tubular membranes.
Physical Review E | 2006
Mohamed Laradji; P. B. Sunil Kumar
The effect of asymmetry in the transbilayer lipid distribution on the dynamics of phase separation in fluid vesicles is investigated numerically. This asymmetry is shown to set a spontaneous curvature for the domains that alter the morphology and dynamics considerably. For moderate tension, the domains are capped and the spontaneous curvature leads to anomalously slow dynamics, as compared to the case of symmetric bilayers. In contrast, in the limiting cases of high and low tensions, the dynamics proceeds toward full phase separation.
Journal of Chemical Physics | 2008
Jasna Urbanija; Klemen Bohinc; Alfredo Bellen; Stefano Maset; Aleš Iglič; Veronika Kralj-Iglič; P. B. Sunil Kumar
We observed monoclonal antibody mediated coalescence of negatively charged giant unilamellar phospholipid vesicles upon close approach of the vesicles. This feature is described, using a mean field density functional theory and Monte Carlo simulations, as that of two interacting flat electrical double layers. Antibodies are considered as spherical counterions of finite dimensions with two equal effective charges spatially separated by a fixed distance l inside it. We calculate the equilibrium configuration of the system by minimizing the free energy. The results obtained by solving the integrodifferential equation and by performing the Monte Carlo simulation are in excellent agreement. For high enough charge densities of the interacting surfaces and large enough l, we obtain within a mean field approach an attractive interaction between like-charged surfaces originating from orientational ordering of quadrupolar counterions. As expected, the interaction between surfaces turns repulsive as the distance between charges is reduced.
Physical Review E | 2010
N. Ramakrishnan; P. B. Sunil Kumar; John Hjort Ipsen
We present a method for simulating fluid vesicles with in-plane orientational ordering. The method involves computation of local curvature tensor and parallel transport of the orientational field on a randomly triangulated surface. It is shown that the model reproduces the known equilibrium conformation of fluid membranes and work well for a large range of bending rigidities. Introduction of nematic ordering leads to stiffening of the membrane. Nematic ordering can also result in anisotropic rigidity on the surface leading to formation of membrane tubes.
Journal of Physical Chemistry B | 2013
Ryan S. Davis; P. B. Sunil Kumar; Maria Maddalena Sperotto; Mohamed Laradji
The phase behavior of the coarse-grained MARTINI model for three-component lipid bilayers composed of dipalmytoyl-phosphatidylcholine (DPPC), cholesterol (Chol), and an unsaturated phosphatidylcholine (PC) was systematically investigated by molecular dynamics simulations. The aim of this study is to understand which types of unsaturated PC induce the formation of thermodynamically stable coexisting phases when added to mixtures of DPPC and Chol and to unravel the mechanisms that drive phase separation in such three-component mixtures. Our simulations indicate that the currently used MARTINI force field does not induce such phase separation in mixtures of DPPC, Chol, and unsaturated PCs with a low unsaturation level, such as palmitoyl-oleoyl-phosphatidylcholine (POPC) or dioleoyl-phosphatidylcholine (DOPC). Also, we found that phase separation does occur in mixtures of DPPC, Chol, and polyunsaturated PCs, such as dilinoleyl-phosphatidylcholine (DUPC) and diarachidonoyl-phosphatidylcholine (DAPC). Through systematic tweaking of the interactions between the hydrophobic groups of the PC molecules, we show that the appearance of phase separation in three-component lipid bilayers, as modeled through the MARTINI force field, is primarily due to the interactions between the coarse-grained molecules, i.e., the beads, rather than due to the differences between the conformations of saturated and unsaturated lipid acyl chains, namely entropy driven.