Abhiram Soori
Indian Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abhiram Soori.
Journal of Physics: Condensed Matter | 2014
Oindrila Deb; Abhiram Soori; Diptiman Sen
We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi(2) Se(3) to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
Physical Review B | 2012
Abhiram Soori; Sourin Das; Sumathi Rao
We study electronic transport across a helical edge state exposed to a uniform magnetic ((B) over right arrow) field over a finite length. We show that this system exhibits Fabry-Perot-type resonances in electronic transport. The intrinsic spin anisotropy of the helical edge states allows us to tune these resonances by changing the direction of the (B) over right arrow field while keeping its magnitude constant. This is in sharp contrast to the case of nonhelical one-dimensional electron gases with a parabolic dispersion, where similar resonances do appear in individual spin channels (up arrow and down arrow) separately which, however, cannot be tuned by merely changing the direction of the (B) over right arrow field. These resonances provide a unique way to probe the helical nature of the theory. We study the robustness of these resonances against a possible static impurity in the channel.
EPL | 2011
Abhiram Soori; Diptiman Sen
We study the effect that resistive regions have on the conductance of a quantum wire with interacting electrons which is connected to Fermi liquid leads. Using the bosonization formalism and a Rayleigh dissipation function to model the power dissipation, we use both scattering theory and Greens function techniques to derive the DC conductance. The resistive regions are generally found to lead to incoherent transport. For a single wire, we find that the resistance adds in series to the contact resistance of h/e(2) for spinless electrons, and the total resistance is independent of the Luttinger parameter K-W of the wire. We numerically solve the bosonic equations to illustrate what happens when a charge density pulse is incident on the wire; the results depend on the parameters of the resistive and interacting regions in interesting ways. For a junction of Tomonaga-Luttinger liquid wires, we use a dissipationless current splitting matrix to model the junction. For a junction of three wires connected to Fermi liquid leads, there are two families of such matrices; we find that the conductance matrix generally depends on K-W for one family but is independent of K-W for the other family, regardless of the resistances present in the system. Copyright (c) EPLA, 2011
Physical Review B | 2013
Abhiram Soori; Oindrila Deb; K. Sengupta; Diptiman Sen
We study transport across a line junction lying between two orthogonal topological insulator surfaces and a superconductor which can have either s-wave (spin-singlet) or p-wave (spin-triplet) pairing symmetry. The junction can have three time-reversal invariant barriers on three sides. We compute the charge and the spin conductance across such a junction and study their behaviors as a function of the bias voltage applied across the junction and the three parameters used to characterize the barrier. We find that the presence of topological insulators and a superconductor leads to both Dirac- and Schrodinger-like features in charge and spin conductances. We discuss the effect of bound states on the superconducting side of the barrier on the conductance; in particular, we show that for triplet p-wave superconductors, such a junction may be used to determine the spin state of its Cooper pairs. Our study reveals that there is a nonzero spin conductance for some particular spin states of the triplet Cooper pairs; this is an effect of the topological insulators which break the spin rotation symmetry. Finally, we find an unusual satellite peak (in addition to the usual zero bias peak) in the spin conductance for p-wave symmetry of the superconductor order parameter.
Physical Review B | 2017
Abhiram Soori; Subroto Mukerjee
Crossed Andreev reflection (cAR) is a scattering process that happens in a quantum transport setup consisting of two normal metals (NM) attached to a superconductor (SC), where an electron incident from one NM results in a hole emerging in the other. Typically, electron tunneling (ET) through the superconductor from one NM to the other competes with cAR and masks its signature in the conductance spectrum. We propose a scheme to enhance cAR, in which the SC part of the NM-SC-NM is side coupled to another SC having a different superconducting phase to form a Josephson junction in the transverse direction. At strong enough coupling and for a large enough phase difference, one can smoothly traverse between the highly ET-dominant to the highly cAR-dominant transport regimes by tuning chemical potential, due to the appearance of subgap Andreev states that are extended in the longitudinal direction. We discuss connections to realistic systems.
Physical Review B | 2010
Abhiram Soori; Diptiman Sen
We study charge pumping when a combination of static potentials and potentials oscillating with a time period T is applied in a one-dimensional system of noninteracting electrons. We consider both an infinite system using the Dirac equation in the continuum approximation and a periodic ring with a finite number of sites using the tight-binding model. The infinite system is taken to be coupled to reservoirs on the two sides which are at the same chemical potential and temperature. We consider a model in which oscillating potentials help the electrons to access a transmission resonance produced by the static potentials and show that nonadiabatic pumping violates the simple sin phi rule which is obeyed by adiabatic two-site pumping. For the ring, we do not introduce any reservoirs, and we present a method for calculating the current averaged over an infinite time using the time evolution operator U(T) assuming a purely Hamiltonian evolution. We analytically show that the averaged current is zero if the Hamiltonian is real and time-reversal invariant. Numerical studies indicate another interesting result, namely, that the integrated current is zero for any time dependence of the potential if it is applied to only one site. Finally we study the effects of pumping at two sites on a ring at resonant and nonresonant frequencies, and show that the pumped current has different dependences on the pumping amplitude in the two cases.
Physical Review B | 2015
Sthitadhi Roy; Abhiram Soori; Sourin Das
Though the Fermi surface of surface states of a 3D topological insulator (TI) has zero magnetization, an arbitrary segment of the full Fermi surface has a unique magnetic moment consistent with the type of spin-momentum locking in hand. We propose a three-terminal set up, which directly couples to the magnetization of a chosen segment of a Fermi surface hence leading to a finite tunnel magnetoresistance (TMR) response of the nonmagnetic TI surface states, when coupled to spin polarized STM probe. This multiterminal TMR not only provides a unique signature of spin-momentum locking for a pristine TI but also provides a direct measure of momentum resolved out of plane polarization of hexagonally warped Fermi surfaces relevant for
Physical Review B | 2011
Abhiram Soori; Diptiman Sen
Bi_2Te_3
Physical Review B | 2009
Dibyendu Roy; Abhiram Soori; Diptiman Sen; Abhishek Dhar
, which could be as comprehensive as spin-resolved ARPES. Implication of this unconventional TMR is also discussed in the broader context of 2D spin-orbit (SO) materials.
Physical Review B | 2018
Abhiram Soori; Manas Ranjan Sahu; Anindya Das; Subroto Mukerjee
In a recent paper, we combined the technique of bosonization with the concept of a Rayleigh dissipation function to develop a model for resistances in one-dimensional systems of interacting spinless electrons [Europhys. Lett. 93, 57007 (2011)]. We also studied the conductance of a system of three wires by using a current splitting matrix