Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abhyudai Singh is active.

Publication


Featured researches published by Abhyudai Singh.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Transcriptional burst frequency and burst size are equally modulated across the human genome

Roy D. Dar; Brandon S. Razooky; Abhyudai Singh; Thomas V. Trimeloni; James M. McCollum; Chris D. Cox; Michael L. Simpson; Leor S. Weinberger

Gene expression occurs either as an episodic process, characterized by pulsatile bursts, or as a constitutive process, characterized by a Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy to analyze 8,000 individual human genomic loci and find that at virtually all loci, episodic bursting—as opposed to constitutive expression—is the predominant mode of expression. Quantitative analysis of the expression dynamics at these 8,000 loci indicates that both the frequency and size of the transcriptional bursts varies equally across the human genome, independent of promoter sequence. Strikingly, weaker expression loci modulate burst frequency to increase activity, whereas stronger expression loci modulate burst size to increase activity. Transcriptional activators such as trichostatin A (TSA) and tumor necrosis factor α (TNF) only modulate burst size and frequency along a constrained trend line governed by the promoter. In summary, transcriptional bursting dominates across the human genome, both burst frequency and burst size vary by chromosomal location, and transcriptional activators alter burst frequency and burst size, depending on the expression level of the locus.


Biophysical Journal | 2010

Transcriptional Bursting from the HIV-1 Promoter is a Significant Source of Stochastic Noise in HIV-1 Gene Expression

Abhyudai Singh; Brandon S. Razooky; Chris D. Cox; Michael L. Simpson; Leor S. Weinberger

Analysis of noise in gene expression has proven a powerful approach for analyzing gene regulatory architecture. To probe the regulatory mechanisms controlling expression of HIV-1, we analyze noise in gene-expression from HIV-1s long terminal repeat (LTR) promoter at different HIV-1 integration sites across the human genome. Flow cytometry analysis of GFP expression from the HIV-1 LTR shows high variability (noise) at each integration site. Notably, the measured noise levels are inconsistent with constitutive gene expression models. Instead, quantification of expression noise indicates that HIV-1 gene expression occurs through randomly timed bursts of activity from the LTR and that each burst generates an average of 2-10 mRNA transcripts before the promoter returns to an inactive state. These data indicate that transcriptional bursting can generate high variability in HIV-1 early gene products, which may critically influence the viral fate-decision between active replication and proviral latency.


IEEE Transactions on Automatic Control | 2011

Approximate Moment Dynamics for Chemically Reacting Systems

Abhyudai Singh; João P. Hespanha

In the stochastic formulation of chemical kinetics, the differential equation that describes the time evolution of the lower-order statistical moments for the number of molecules of the different species involved, is generally not closed, in the sense that the right-hand side of this equation depends on higher-order moments. Recent work has proposed a moment closure technique based on derivative-matching, which closes the moment equations by approximating higher-order moments as nonlinear functions of lower-order moments. We here provide a mathematical proof of this moment closure technique, and highlight its performance through comparisons with alternative methods. These comparisons reveal that this moment closure technique based on derivative-matching provides more accurate estimates of the moment dynamics, especially when the population size is small. Finally, we show that the accuracy of the proposed moment closure scheme can be arbitrarily increased by incurring additional computational effort.


Nature | 2017

Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance

Sydney Shaffer; Margaret Dunagin; Stefan R. Torborg; Eduardo A. Torre; Benjamin Emert; Clemens Krepler; Marilda Beqiri; Katrin Sproesser; Patricia Brafford; Min Xiao; Elliott Eggan; Ioannis N. Anastopoulos; Cesar A. Vargas-Garcia; Abhyudai Singh; Katherine L. Nathanson; Meenhard Herlyn; Arjun Raj

Therapies that target signalling molecules that are mutated in cancers can often have substantial short-term effects, but the emergence of resistant cancer cells is a major barrier to full cures. Resistance can result from secondary mutations, but in other cases there is no clear genetic cause, raising the possibility of non-genetic rare cell variability. Here we show that human melanoma cells can display profound transcriptional variability at the single-cell level that predicts which cells will ultimately resist drug treatment. This variability involves infrequent, semi-coordinated transcription of a number of resistance markers at high levels in a very small percentage of cells. The addition of drug then induces epigenetic reprogramming in these cells, converting the transient transcriptional state to a stably resistant state. This reprogramming begins with a loss of SOX10-mediated differentiation followed by activation of new signalling pathways, partially mediated by the activity of the transcription factors JUN and/or AP-1 and TEAD. Our work reveals the multistage nature of the acquisition of drug resistance and provides a framework for understanding resistance dynamics in single cells. We find that other cell types also exhibit sporadic expression of many of these same marker genes, suggesting the existence of a general program in which expression is displayed in rare subpopulations of cells.


Biophysical Journal | 2009

Optimal Feedback Strength for Noise Suppression in Autoregulatory Gene Networks

Abhyudai Singh; João P. Hespanha

Autoregulatory feedback loops, where the protein expressed from a gene inhibits or activates its own expression are common gene network motifs within cells. In these networks, stochastic fluctuations in protein levels are attributed to two factors: intrinsic noise (i.e., the randomness associated with mRNA/protein expression and degradation) and extrinsic noise (i.e., the noise caused by fluctuations in cellular components such as enzyme levels and gene-copy numbers). We present results that predict the level of both intrinsic and extrinsic noise in protein numbers as a function of quantities that can be experimentally determined and/or manipulated, such as the response time of the protein and the level of feedback strength. In particular, we show that for a fixed average number of protein molecules, decreasing response times leads to attenuation of both protein intrinsic and extrinsic noise, with the extrinsic noise being more sensitive to changes in the response time. We further show that for autoregulatory networks with negative feedback, the protein noise levels can be minimal at an optimal level of feedback strength. For such cases, we provide an analytical expression for the highest level of noise suppression and the amount of feedback that achieves this minimal noise. These theoretical results are shown to be consistent and explain recent experimental observations. Finally, we illustrate how measuring changes in the protein noise levels as the feedback strength is manipulated can be used to determine the level of extrinsic noise in these gene networks.


Molecular Systems Biology | 2012

Dynamics of protein noise can distinguish between alternate sources of gene-expression variability.

Abhyudai Singh; Brandon S. Razooky; Roy D. Dar; Leor S. Weinberger

Within individual cells, two molecular processes have been implicated as sources of noise in gene expression: (i) Poisson fluctuations in mRNA abundance arising from random birth and death of individual mRNA transcripts or (ii) promoter fluctuations arising from stochastic promoter transitions between different transcriptional states. Steady‐state measurements of variance in protein levels are insufficient to discriminate between these two mechanisms, and mRNA single‐molecule fluorescence in situ hybridization (smFISH) is challenging when cellular mRNA concentrations are high. Here, we present a perturbation method that discriminates mRNA birth/death fluctuations from promoter fluctuations by measuring transient changes in protein variance and that can operate in the regime of high molecular numbers. Conceptually, the method exploits the fact that transcriptional blockage results in more rapid increases in protein variability when mRNA birth/death fluctuations dominate over promoter fluctuations. We experimentally demonstrate the utility of this perturbation approach in the HIV‐1 model system. Our results support promoter fluctuations as the primary noise source in HIV‐1 expression. This study illustrates a relatively simple method that complements mRNA smFISH hybridization and can be used with existing GFP‐tagged libraries to include or exclude alternate sources of noise in gene expression.


conference on decision and control | 2006

Lognormal Moment Closures for Biochemical Reactions

Abhyudai Singh; João P. Hespanha

In the stochastic formulation of chemical reactions, the dynamics of the first M-order moments of the species populations generally do not form a closed system of differential equations, in the sense that the time-derivatives of first M-order moments generally depend on moments of order higher than M. However, for analysis purposes, these dynamics are often made to be closed by approximating the needed derivatives of the first M-order moments by nonlinear functions of the same moments. These functions are called the moment closure functions. Recent results have introduced the technique of derivative-matching, where the moment closure functions are obtained by first assuming that they exhibit a certain separable form, and then matching time derivatives of the exact (not closed) moment equations with that of the approximate (closed) equations for some initial time and set of initial conditions. However, for multi-species reactions these results have been restricted to second order truncations, i.e, M = 2. This paper extends these results by providing explicit formulas to construct moment closure functions for any arbitrary order of truncation M. We show that with increasing M the closed moment equations provide more accurate approximations to the exact moment equations. Striking features of these moment closure functions are that they are independent of the reaction parameters (reaction rates and stoichiometry) and moreover the dependence of higher-order moment on lower order ones is consistent with the population being jointly lognormally distributed. To illustrate the applicability of our results we consider a simple bi-molecular reaction. Moment estimates from a third order truncation are compared with estimates obtained from a large number of Monte Carlo simulations


Philosophical Transactions of the Royal Society A | 2010

Stochastic hybrid systems for studying biochemical processes

Abhyudai Singh; João P. Hespanha

Many protein and mRNA species occur at low molecular counts within cells, and hence are subject to large stochastic fluctuations in copy numbers over time. Development of computationally tractable frameworks for modelling stochastic fluctuations in population counts is essential to understand how noise at the cellular level affects biological function and phenotype. We show that stochastic hybrid systems (SHSs) provide a convenient framework for modelling the time evolution of population counts of different chemical species involved in a set of biochemical reactions. We illustrate recently developed techniques that allow fast computations of the statistical moments of the population count, without having to run computationally expensive Monte Carlo simulations of the biochemical reactions. Finally, we review different examples from the literature that illustrate the benefits of using SHSs for modelling biochemical processes.


PLOS ONE | 2013

Quantifying intrinsic and extrinsic variability in stochastic gene expression models.

Abhyudai Singh; Mohammad Soltani

Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters.


IEEE Transactions on Nanobioscience | 2011

Negative Feedback Through mRNA Provides the Best Control of Gene-Expression Noise

Abhyudai Singh

Genetically identical cell populations exposed to the same environment can exhibit considerable cell-to-cell variation in the levels of specific proteins. This variation or expression noise arises from the inherent stochastic nature of biochemical reactions that constitute gene expression. Negative feedback loops are common motifs in gene networks that reduce expression noise and intercellular variability in protein levels. Using stochastic models of gene expression we here compare different feedback architectures in their ability to reduce stochasticity in protein levels. A mathematically controlled comparison shows that in physiologically relevant parameter regimes, feedback regulation through the mRNA provides the best suppression of expression noise. Consistent with our theoretical results we find negative feedback loops though the mRNA in essential eukaryotic genes, where feedback is mediated via intron-derived microRNAs. Finally, we find that contrary to previous results, protein-mediated translational regulation may not always provide significantly better noise suppression than protein-mediated transcriptional regulation.

Collaboration


Dive into the Abhyudai Singh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavol Bokes

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge