Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abigail Betanzos is active.

Publication


Featured researches published by Abigail Betanzos.


Progress in Biophysics & Molecular Biology | 2003

Tight junction proteins.

Lorenza González-Mariscal; Abigail Betanzos; Porfirio Nava; B.E Jaramillo

A fundamental function of epithelia and endothelia is to separate different compartments within the organism and to regulate the exchange of substances between them. The tight junction (TJ) constitutes the barrier both to the passage of ions and molecules through the paracellular pathway and to the movement of proteins and lipids between the apical and the basolateral domains of the plasma membrane. In recent years more than 40 different proteins have been discovered to be located at the TJs of epithelia, endothelia and myelinated cells. This unprecedented expansion of information has changed our view of TJs from merely a paracellular barrier to a complex structure involved in signaling cascades that control cell growth and differentiation. Both cortical and transmembrane proteins integrate TJs. Among the former are scaffolding proteins containing PDZ domains, tumor suppressors, transcription factors and proteins involved in vesicle transport. To date two components of the TJ filaments have been identified: occludin and claudin. The latter is a protein family with more than 20 members. Both occludin and claudins are integral proteins capable of interacting adhesively with complementary molecules on adjacent cells and of co-polymerizing laterally. These advancements in the knowledge of the molecular structure of TJ support previous physiological models that exhibited TJ as dynamic structures that present distinct permeability and morphological characteristics in different tissues and in response to changing natural, pathological or experimental conditions.


Toxicology and Applied Pharmacology | 2009

Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization.

Ingrid C. McCall; Abigail Betanzos; Dominique A. Weber; Porfirio Nava; Gary W. Miller; Charles A. Parkos

Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.


Mucosal Immunology | 2009

Guanylate-binding protein-1 is expressed at tight junctions of intestinal epithelial cells in response to interferon-γ and regulates barrier function through effects on apoptosis

Michael Schnoor; Abigail Betanzos; Dominique A. Weber; Charles A. Parkos

Guanylate-binding protein-1 (GBP-1) is an interferon inducible large GTPase involved in endothelial cell proliferation and invasion. In this report, expression and function of GBP-1 were investigated in vitro in intestinal epithelia after exposure to interferon-γ and in human colonic mucosa from individuals with inflammatory bowel disease (IBD). Interestingly, in contrast to other epithelia, GBP-1 distributed to the plasma membrane in intestinal epithelial cells where it colocalized with the tight junction protein coxsackie- and adenovirus receptor. In addition, expression of GBP-1 was upregulated in colonic epithelia of individuals with IBD. Downregulation of GBP-1 by siRNA resulted in enhanced permeability that correlated with increased apoptosis. Indeed, inhibition of caspase activity prevented the inhibition of barrier formation induced by the loss of GBP-1. These data suggest that GBP-1 is a novel marker of intestinal mucosal inflammation that may protect against epithelial apoptosis induced by inflammatory cytokines and subsequent loss of barrier function.


Tissue barriers | 2013

Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms

Alí Francisco Citalán-Madrid; Alexander García-Ponce; Hilda Vargas-Robles; Abigail Betanzos; Michael Schnoor

The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.


PLOS ONE | 2013

The EhCPADH112 Complex of Entamoeba histolytica Interacts with Tight Junction Proteins Occludin and Claudin-1 to Produce Epithelial Damage

Abigail Betanzos; Rosario Javier-Reyna; Guillermina García-Rivera; Cecilia Bañuelos; Lorenza González-Mariscal; Michael Schnoor; Esther Orozco

Entamoeba histolytica, the protozoan responsible for human amoebiasis, causes between 30,000 and 100,000 deaths per year worldwide. Amoebiasis is characterized by intestinal epithelial damage provoking severe diarrhea. However, the molecular mechanisms by which this protozoan causes epithelial damage are poorly understood. Here, we studied the initial molecular interactions between the E. histolytica EhCPADH112 virulence complex and epithelial MDCK and Caco-2 cells. By confocal microscopy, we discovered that after contact with trophozoites or trophozoite extracts (TE), EhCPADH112 and proteins forming this complex (EhCP112 and EhADH112) co-localize with occludin and claudin-1 at tight junctions (TJ). Immunoprecipitation assays revealed interaction between EhCPADH112 and occludin, claudin-1, ZO-1 and ZO-2. Overlay assays confirmed an interaction of EhCP112 and EhADH112 with occludin and claudin-1, whereas only EhADH112 interacted also with ZO-2. We observed degradation of all mentioned TJ proteins after incubation with TE. Importantly, inhibiting proteolytic activity or blocking the complex with a specific antibody not only prevented TJ protein degradation but also epithelial barrier disruption. Furthermore, we discovered that TE treatment induces autophagy and apoptosis in MDCK cells that could contribute to the observed barrier disruption. Our results suggest a model in which epithelial damage caused by E. histolytica is initiated by the interaction of EhCP112 and EhADH112 with TJ proteins followed by their degradation. Disruption of TJs then induces increased paracellular permeability, thus facilitating the entry of more proteases and other parasite molecules leading eventually to tissue destruction.


Scientific Reports | 2016

Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility

Alexander García Ponce; Alí Francisco Citalán Madrid; Hilda Vargas Robles; Sandra Chánez Paredes; Porfirio Nava; Abigail Betanzos; Alexander Zarbock; Klemens Rottner; Dietmar Vestweber; Michael Schnoor

Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity.


PLOS Pathogens | 2015

EhVps32 Is a Vacuole-Associated Protein Involved in Pinocytosis and Phagocytosis of Entamoeaba histolytica

Yunuen Avalos-Padilla; Abigail Betanzos; Rosario Javier-Reyna; Guillermina García-Rivera; Bibiana Chávez-Munguía; Anel Lagunes-Guillén; Jaime Ortega; Esther Orozco

Here, we investigated the role of EhVps32 protein (a member of the endosomal-sorting complex required for transport) in endocytosis of Entamoeba histolytica, a professional phagocyte. Confocal microscopy, TEM and cell fractionation revealed EhVps32 in cytoplasmic vesicles and also located adjacent to the plasma membrane. Between 5 to 30 min of phagocytosis, EhVps32 was detected on some erythrocytes-containing phagosomes of acidic nature, and at 60 min it returned to cytoplasmic vesicles and also appeared adjacent to the plasma membrane. TEM images revealed it in membranous structures in the vicinity of ingested erythrocytes. EhVps32, EhADH (an ALIX family member), Gal/GalNac lectin and actin co-localized in the phagocytic cup and in some erythrocytes-containing phagosomes, but EhVps32 was scarcely detected in late phagosomes. During dextran uptake, EhVps32, EhADH and Gal/GalNac lectin, but not actin, co-localized in pinosomes. EhVps32 recombinant protein formed oligomers composed by rings and filaments. Antibodies against EhVps32 monomers stained cytoplasmic vesicles but not erythrocytes-containing phagosomes, suggesting that in vivo oligomers are formed on phagosome membranes. The involvement of EhVps32 in phagocytosis was further study in pNeoEhvps32-HA-transfected trophozoites, which augmented almost twice their rate of erythrophagocytosis as well as the membranous concentric arrays built by filaments, spirals and tunnel-like structures. Some of these structures apparently connected phagosomes with the phagocytic cup. In concordance, the EhVps32-silenced G3 trophozoites ingested 80% less erythrocytes than the G3 strain. Our results suggest that EhVps32 participates in E. histolytica phagocytosis and pinocytosis. It forms oligomers on erythrocytes-containing phagosomes, probably as a part of the scission machinery involved in membrane invagination and intraluminal vesicles formation.


Mucosal Immunology | 2017

Cortactin deficiency causes increased RhoA|[sol]|ROCK1-dependent actomyosin contractility, intestinal epithelial barrier dysfunction, and disproportionately severe DSS-induced colitis

A F Citalán-Madrid; H Vargas-Robles; A García-Ponce; M Shibayama; Abigail Betanzos; Porfirio Nava; C Salinas-Lara; K Rottner; R Mennigen; Michael Schnoor

The intestinal epithelium constitutes a first line of defense of the innate immune system. Epithelial dysfunction is a hallmark of intestinal disorders such as inflammatory bowel diseases (IBDs). The actin cytoskeleton controls epithelial barrier integrity but the function of actin regulators such as cortactin is poorly understood. Given that cortactin controls endothelial permeability, we hypothesized that cortactin is also important for epithelial barrier regulation. We found increased permeability in the colon of cortactin-KO mice that was accompanied by reduced levels of ZO-1, claudin-1, and E-cadherin. By contrast, claudin-2 was upregulated. Cortactin deficiency increased RhoA/ROCK1-dependent actomyosin contractility, and inhibition of ROCK1 rescued the barrier defect. Interestingly, cortactin deficiency caused increased epithelial proliferation without affecting apoptosis. KO mice did not develop spontaneous colitis, but were more susceptible to dextran sulfate sodium colitis and showed severe colon tissue damage and edema formation. KO mice with colitis displayed strong mucus deposition and goblet cell depletion. In healthy human colon tissues, cortactin co-localized with ZO-1 at epithelial cell contacts. In IBDs patients, we observed decreased cortactin levels and loss of co-localization with ZO-1. Thus, cortactin is a master regulator of intestinal epithelial barrier integrity in vivo and could serve as a suitable target for pharmacological intervention in IBDs.


Archive | 2006

TJ Proteins That Make Round Trips to the Nucleus

Esther López-Bayghen; Blanca Estela Jaramillo; Miriam Huerta; Abigail Betanzos; Lorenza González-Mariscal

The tight junction (TJ) located at the limit between the apical and basolateral plasma membranes, is a multiprotein complex integrated by both integral and cortical proteins. Through TJ epithelial cells establish a link with their neighbors that seals the paracellular pathway. Lately some TJ proteins like the MAGUK ZO-1 and ZO-2, MAGI 1c, as well as the unrelated proteins symplekin and ubinuclein, have been found to concentrate at the nucleus. In this chapter we describe such proteins and how their arrival to the nucleus is connected to the degree of cell-cell contact. We analyze the signals present in these TJ proteins that may be responsible for their movement from the membrane to the nucleus and vice-versa. We then detail, the interaction of these proteins to nuclear molecules involved in gene transcription, chromatin remodeling, RNA processing and polyadenylation.


PLOS Pathogens | 2016

EhNPC1 and EhNPC2 Proteins Participate in Trafficking of Exogenous Cholesterol in Entamoeba histolytica Trophozoites: Relevance for Phagocytosis.

Jeni Bolaños; Abigail Betanzos; Rosario Javier-Reyna; Guillermina García Rivera; Miriam Huerta; Jonnatan Pais-Morales; Arturo González-Robles; Mario A. Rodríguez; Michael Schnoor; Esther Orozco; William A. Petri

Entamoeba histolytica, the highly phagocytic protozoan causative of human amoebiasis lacks the machinery to synthesize cholesterol. Here, we investigated the presence of NPC1 and NPC2 proteins in this parasite, which are involved in cholesterol trafficking in mammals. Bioinformatics analysis revealed one Ehnpc1 and two Ehnpc2 genes. EhNPC1 appeared as a transmembrane protein and both EhNPC2 as peripheral membrane proteins. Molecular docking predicted that EhNPC1 and EhNPC2 bind cholesterol and interact with each other. Genes and proteins were identified in trophozoites. Serum pulse-chase and confocal microscopy assays unveiled that after trophozoites sensed the cholesterol source, EhNPC1 and EhNPC2 were organized around the plasma membrane in a punctuated pattern. Vesicles emerged and increased in number and size and some appeared full of cholesterol with EhNPC1 or EhNPC2 facing the extracellular space. Both proteins, but mostly EhNPC2, were found out of the cell associated with cholesterol. EhNPC1 and cholesterol formed networks from the plasma membrane to the nucleus. EhNPC2 appeared in erythrocytes that were being ingested by trophozoites, co-localizing with cholesterol of erythrocytes, whereas EhNPC1 surrounded the phagocytic cup. EhNPC1 and EhNPC2 co-localized with EhSERCA in the endoplasmic reticulum and with lysobisphosphatidic acid and EhADH (an Alix protein) in phagolysosomes. Immunoprecipitation assays confirmed the EhNPC1 and EhNPC2 association with cholesterol, EhRab7A and EhADH. Serum starved and blockage of cholesterol trafficking caused a low rate of phagocytosis and incapability of trophozoites to produce damage in the mouse colon. Ehnpc1 and Ehnpc2 knockdown provoked in trophozoites a lower intracellular cholesterol concentration and a diminished rate of phagocytosis; and Ehnpc1 silencing also produced a decrease of trophozoites movement. Trafficking of EhNPC1 and EhNPC2 during cholesterol uptake and phagocytosis as well as their association with molecules involved in endocytosis strongly suggest that these proteins play a key role in cholesterol uptake.

Collaboration


Dive into the Abigail Betanzos's collaboration.

Top Co-Authors

Avatar

Esther Orozco

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anel Lagunes-Guillén

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge