Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Schnoor is active.

Publication


Featured researches published by Michael Schnoor.


Mucosal Immunology | 2009

Guanylate-binding protein-1 is expressed at tight junctions of intestinal epithelial cells in response to interferon-γ and regulates barrier function through effects on apoptosis

Michael Schnoor; Abigail Betanzos; Dominique A. Weber; Charles A. Parkos

Guanylate-binding protein-1 (GBP-1) is an interferon inducible large GTPase involved in endothelial cell proliferation and invasion. In this report, expression and function of GBP-1 were investigated in vitro in intestinal epithelia after exposure to interferon-γ and in human colonic mucosa from individuals with inflammatory bowel disease (IBD). Interestingly, in contrast to other epithelia, GBP-1 distributed to the plasma membrane in intestinal epithelial cells where it colocalized with the tight junction protein coxsackie- and adenovirus receptor. In addition, expression of GBP-1 was upregulated in colonic epithelia of individuals with IBD. Downregulation of GBP-1 by siRNA resulted in enhanced permeability that correlated with increased apoptosis. Indeed, inhibition of caspase activity prevented the inhibition of barrier formation induced by the loss of GBP-1. These data suggest that GBP-1 is a novel marker of intestinal mucosal inflammation that may protect against epithelial apoptosis induced by inflammatory cytokines and subsequent loss of barrier function.


Thrombosis and Haemostasis | 2014

The role of actin-binding proteins in the control of endothelial barrier integrity

Alexander García-Ponce; Alí Francisco Citalán-Madrid; Martha Velázquez-Avila; Hilda Vargas-Robles; Michael Schnoor

The endothelial barrier of the vasculature is of utmost importance for separating the blood stream from underlying tissues. This barrier is formed by tight and adherens junctions (TJ and AJ) that form intercellular endothelial contacts. TJ and AJ are integral membrane structures that are connected to the actin cytoskeleton via various adaptor molecules. Consequently, the actin cytoskeleton plays a crucial role in regulating the stability of endothelial cell contacts and vascular permeability. While a circumferential cortical actin ring stabilises junctions, the formation of contractile stress fibres, e. g. under inflammatory conditions, can contribute to junction destabilisation. However, the role of actin-binding proteins (ABP) in the control of vascular permeability has long been underestimated. Naturally, ABP regulate permeability via regulation of actin remodelling but some actin-binding molecules can also act independently of actin and control vascular permeability via various signalling mechanisms such as activation of small GTPases. Several studies have recently been published highlighting the importance of actin-binding molecules such as cortactin, ezrin/radixin/moesin, Arp2/3, VASP or WASP for the control of vascular permeability by various mechanisms. These proteins have been described to regulate vascular permeability under various pathophysiological conditions and are thus of clinical relevance as targets for the development of treatment strategies for disorders that are characterised by vascular hyperpermeability such as sepsis. This review highlights recent advances in determining the role of ABP in the control of endothelial cell contacts and vascular permeability.


Tissue barriers | 2013

Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms

Alí Francisco Citalán-Madrid; Alexander García-Ponce; Hilda Vargas-Robles; Abigail Betanzos; Michael Schnoor

The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.


Journal of Immunology | 2010

Commensal Escherichia coli Reduces Epithelial Apoptosis through IFN-αA–Mediated Induction of Guanylate Binding Protein-1 in Human and Murine Models of Developing Intestine

Julie Mirpuri; Jennifer C. Brazil; Andrew J. Berardinelli; Tala R. Nasr; Kiesha Cooper; Michael Schnoor; Patricia W. Lin; Charles A. Parkos; Nancy A. Louis

Appropriate microbial colonization protects the developing intestine by promoting epithelial barrier function and fostering mucosal tolerance to luminal bacteria. Commensal flora mediate their protective effects through TLR9-dependent activation of cytokines, such as type I IFNs (α, β) and IL-10. Although IFN-β promotes apoptosis, IFN-α activates specific antiapoptotic target genes whose actions preserve epithelial barrier integrity. We have recently identified guanylate binding protein-1 (GBP-1) as an antiapoptotic protein, regulated by both type I and type II IFNs, that promotes intestinal epithelial barrier integrity in mature intestine. However, the mechanisms by which commensal bacteria regulate epithelial apoptosis during colonization of immature intestine and the contributions of GBP-1 are unknown. The healthy newborn intestine is initially colonized with bacterial species present in the maternal gastrointestinal tract, including nonpathogenic Escherichia coli. Therefore, we examined the influence of commensal E. coli on cytokine expression and candidate mediators of apoptosis in preweaned mice. Specifically, enteral exposure of 2 wk-old mice to commensal E. coli for 24 h selectively increased both IFN-αA and GBP-1 mRNA expression and prevented staurosporine-induced epithelial apoptosis. Exogenous IFN-αA treatment also induced GBP-1 expression and protected against staurosporine-induced apoptosis in a GBP-1 dependent manner, both in vitro and ex vivo. These findings identify a role for IFN-αA–mediated GBP-1 expression in the prevention of intestinal epithelial apoptosis by commensal bacteria. Thus IFN-αA mediates the beneficial effects of commensal bacteria and may be a promising therapeutic target to promote barrier integrity and prevent the inappropriate inflammatory responses seen in developing intestine as in necrotizing enterocolitis.


Journal of Immunology | 2015

Endothelial Actin-Binding Proteins and Actin Dynamics in Leukocyte Transendothelial Migration

Michael Schnoor

The endothelium is the first barrier that leukocytes have to overcome during recruitment to sites of inflamed tissues. The leukocyte extravasation cascade is a complex multistep process that requires the activation of various adhesion molecules and signaling pathways, as well as actin remodeling, in both leukocytes and endothelial cells. Endothelial adhesion molecules, such as E-selectin or ICAM-1, are connected to the actin cytoskeleton via actin-binding proteins (ABPs). Although the contribution of receptor–ligand interactions to leukocyte extravasation has been studied extensively, the contribution of endothelial ABPs to the regulation of leukocyte adhesion and transendothelial migration remains poorly understood. This review focuses on recently published evidence that endothelial ABPs, such as cortactin, myosin, or α-actinin, regulate leukocyte extravasation by controlling actin dynamics, biomechanical properties of endothelia, and signaling pathways, such as GTPase activation, during inflammation. Thus, ABPs may serve as targets for novel treatment strategies for disorders characterized by excessive leukocyte recruitment.


Mediators of Inflammation | 2015

Crossing the Vascular Wall: Common and Unique Mechanisms Exploited by Different Leukocyte Subsets during Extravasation

Michael Schnoor; Pilar Alcaide; Mathieu-Benoit Voisin; Jaap D. van Buul

Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers.


PLOS ONE | 2013

The EhCPADH112 Complex of Entamoeba histolytica Interacts with Tight Junction Proteins Occludin and Claudin-1 to Produce Epithelial Damage

Abigail Betanzos; Rosario Javier-Reyna; Guillermina García-Rivera; Cecilia Bañuelos; Lorenza González-Mariscal; Michael Schnoor; Esther Orozco

Entamoeba histolytica, the protozoan responsible for human amoebiasis, causes between 30,000 and 100,000 deaths per year worldwide. Amoebiasis is characterized by intestinal epithelial damage provoking severe diarrhea. However, the molecular mechanisms by which this protozoan causes epithelial damage are poorly understood. Here, we studied the initial molecular interactions between the E. histolytica EhCPADH112 virulence complex and epithelial MDCK and Caco-2 cells. By confocal microscopy, we discovered that after contact with trophozoites or trophozoite extracts (TE), EhCPADH112 and proteins forming this complex (EhCP112 and EhADH112) co-localize with occludin and claudin-1 at tight junctions (TJ). Immunoprecipitation assays revealed interaction between EhCPADH112 and occludin, claudin-1, ZO-1 and ZO-2. Overlay assays confirmed an interaction of EhCP112 and EhADH112 with occludin and claudin-1, whereas only EhADH112 interacted also with ZO-2. We observed degradation of all mentioned TJ proteins after incubation with TE. Importantly, inhibiting proteolytic activity or blocking the complex with a specific antibody not only prevented TJ protein degradation but also epithelial barrier disruption. Furthermore, we discovered that TE treatment induces autophagy and apoptosis in MDCK cells that could contribute to the observed barrier disruption. Our results suggest a model in which epithelial damage caused by E. histolytica is initiated by the interaction of EhCP112 and EhADH112 with TJ proteins followed by their degradation. Disruption of TJs then induces increased paracellular permeability, thus facilitating the entry of more proteases and other parasite molecules leading eventually to tissue destruction.


Cell Death & Differentiation | 2016

14-3-3 Proteins regulate Akt Thr308 phosphorylation in intestinal epithelial cells

M Gómez-Suárez; I Z Gutiérrez-Martínez; J A Hernández-Trejo; M Hernández-Ruiz; D Suárez-Pérez; Aurora Candelario; R Kamekura; O Medina-Contreras; Michael Schnoor; V Ortiz-Navarrete; Nicolás Villegas-Sepúlveda; C Parkos; A Nusrat; Porfirio Nava

Akt activation has been associated with proliferation, differentiation, survival and death of epithelial cells. Phosphorylation of Thr308 of Akt by phosphoinositide-dependent kinase 1 (PDK1) is critical for optimal stimulation of its kinase activity. However, the mechanism(s) regulating this process remain elusive. Here, we report that 14-3-3 proteins control Akt Thr308 phosphorylation during intestinal inflammation. Mechanistically, we found that IFNγ and TNFα treatment induce degradation of the PDK1 inhibitor, 14-3-3η, in intestinal epithelial cells. This mechanism requires association of 14-3-3ζ with raptor in a process that triggers autophagy and leads to 14-3-3η degradation. Notably, inhibition of 14-3-3 function by the chemical inhibitor BV02 induces uncontrolled Akt activation, nuclear Akt accumulation and ultimately intestinal epithelial cell death. Our results suggest that 14-3-3 proteins control Akt activation and regulate its biological functions, thereby providing a new mechanistic link between cell survival and apoptosis of intestinal epithelial cells during inflammation.


Mucosal Immunology | 2017

Cortactin deficiency causes increased RhoA|[sol]|ROCK1-dependent actomyosin contractility, intestinal epithelial barrier dysfunction, and disproportionately severe DSS-induced colitis

A F Citalán-Madrid; H Vargas-Robles; A García-Ponce; M Shibayama; Abigail Betanzos; Porfirio Nava; C Salinas-Lara; K Rottner; R Mennigen; Michael Schnoor

The intestinal epithelium constitutes a first line of defense of the innate immune system. Epithelial dysfunction is a hallmark of intestinal disorders such as inflammatory bowel diseases (IBDs). The actin cytoskeleton controls epithelial barrier integrity but the function of actin regulators such as cortactin is poorly understood. Given that cortactin controls endothelial permeability, we hypothesized that cortactin is also important for epithelial barrier regulation. We found increased permeability in the colon of cortactin-KO mice that was accompanied by reduced levels of ZO-1, claudin-1, and E-cadherin. By contrast, claudin-2 was upregulated. Cortactin deficiency increased RhoA/ROCK1-dependent actomyosin contractility, and inhibition of ROCK1 rescued the barrier defect. Interestingly, cortactin deficiency caused increased epithelial proliferation without affecting apoptosis. KO mice did not develop spontaneous colitis, but were more susceptible to dextran sulfate sodium colitis and showed severe colon tissue damage and edema formation. KO mice with colitis displayed strong mucus deposition and goblet cell depletion. In healthy human colon tissues, cortactin co-localized with ZO-1 at epithelial cell contacts. In IBDs patients, we observed decreased cortactin levels and loss of co-localization with ZO-1. Thus, cortactin is a master regulator of intestinal epithelial barrier integrity in vivo and could serve as a suitable target for pharmacological intervention in IBDs.


Tissue barriers | 2016

Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family.

Alexander García-Ponce; Sandra Chánez Paredes; Karla Fabiola Castro Ochoa; Michael Schnoor

ABSTRACT The correct regulation of tissue barriers is of utmost importance for health. Barrier dysfunction accompanies inflammatory disorders and, if not controlled properly, can contribute to the development of chronic diseases. Tissue barriers are formed by monolayers of epithelial cells that separate organs from their environment, and endothelial cells that cover the vasculature, thus separating the blood stream from underlying tissues. Cells within the monolayers are connected by intercellular junctions that are linked by adaptor molecules to the cytoskeleton, and the regulation of these interactions is critical for the maintenance of tissue barriers. Many endogenous and exogenous molecules are known to regulate barrier functions in both ways. Proinflammatory cytokines weaken the barrier, whereas anti-inflammatory mediators stabilize barriers. Adrenomedullin (ADM) and intermedin (IMD) are endogenous peptide hormones of the same family that are produced and secreted by many cell types during physiologic and pathologic conditions. They activate certain G-protein-coupled receptor complexes to regulate many cellular processes such as cytokine production, actin dynamics and junction stability. In this review, we summarize current knowledge about the barrier-stabilizing effects of ADM and IMD in health and disease.

Collaboration


Dive into the Michael Schnoor's collaboration.

Top Co-Authors

Avatar

Abigail Betanzos

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klemens Rottner

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Esther Orozco

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Rosana Pelayo

Oklahoma Medical Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge