Abigail Sedlacek
University of Rochester Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abigail Sedlacek.
Biology of Reproduction | 2012
B. Anne Croy; Zhilin Chen; Alexander P. Hofmann; Edith M. Lord; Abigail Sedlacek; Scott A. Gerber
ABSTRACT In species with endometrial decidualization and hemochorial placentation (humans, mice, and others), leukocytes localize to early implant sites and contribute to decidual angiogenesis, spiral arterial remodeling, and trophoblast invasion. Relationships between leukocytes, trophoblasts, and the decidual vasculature are not fully defined. Early C57BL/6J implant sites were analyzed by flow cytometry to define leukocyte subsets and by whole-mount immunohistochemistry to visualize relationships between leukocytes, decidual vessels, and trophoblasts. Ptprc+ (CD45+) cells increased in decidua between Gestational Day (GD) 5.5 and GD 9.5. Uterine natural killer (uNK) cells that showed dynamic expression of Cd (CD) 69, an activating receptor, and Klrg1 (KLRG1), an inhibitory receptor, localized mesometrially and were the dominant CD45+ cells between GD 5.5 and GD 7.5. At GD 8.5, immature monocytes that occurred throughout decidua exceeded uNK cells numerically and many leukocytes acquired irregular shapes, and leukocyte-leukocyte conjugates became frequent. Vessels were morphologically heterogeneous and regionally unique. Migrating trophoblasts were first observed at GD 6.5 and, at GD 9.5, breached endothelium, entered vascular lumens, and appeared to occlude some vessels, as described for human spiral arteries. No leukocyte-trophoblast conjugates were detected. Whole-mount staining gave unparalleled decidual vascular detail and cell-specific positional information. Its application across murine models of pregnancy disturbances should significantly advance our understanding of the maternal-fetal interface.
Immunologic Research | 2009
Elizabeth W. Sorensen; Scott A. Gerber; Abigail Sedlacek; Viktoriya Y. Rybalko; Winnie M. Chan; Edith M. Lord
The omentum, an important peritoneal tissue, is studded with a high number of immune aggregates, or “milky spots,” the number, function, and phenotype of which is largely unknown. We have analyzed the immune composition on the normal omentum and also have shown that both free immune cells and tumor cells in the peritoneal fluid bind preferentially to these immune aggregates. This binding may be mediated by the network of collagen I fibers, which overlay these areas. In addition, we have shown that not only do omental vessels express vascular endothelial growth factor receptor 3 (VEGFR3), a receptor that is only found on angiogenic blood vessels, but that tumor cells co-localize with these vessels, possibly increasing the ability of tumor to induce neovascularization and therefore thrive.
American Journal of Pathology | 2013
Scott A. Gerber; Abigail Sedlacek; Kyle R. Cron; Shawn P. Murphy; John G. Frelinger; Edith M. Lord
Cancer treatments using ionizing radiation (IR) therapy are thought to act primarily through the induction of tumor cell damage at a molecular level. However, a new concept has recently emerged, suggesting that the immune system is required for effective IR therapy. Our work here has identified interferon gamma (IFN-γ) as an essential cytokine for the efficacy of IR therapy. Local IR (15 Gy) to mice bearing Colon38, a colon adenocarcinoma, decreases tumor burden in wild-type animals. Interestingly, IR therapy had no effect on tumor burden in IFNγKO mice. We further determined that intratumoral levels of IFN-γ increased 2 days following IR, which directly correlated with a decrease in tumor burden that was not a result of direct cytotoxic effects of IFN-γ on tumor cells. T cells from IR-treated tumors exhibited a far greater capacity to lyse tumor cells in a (51)Cr release assay, a process that was dependent on IFN-γ. CD8(+) T cells were the predominant producers of IFN-γ, as demonstrated by IFN-γ intracellular staining and studies in IFN-γ reporter mice. Elimination of CD8(+) T cells by antibody treatment reduced the intratumoral levels of IFN-γ by over 90%. More importantly, elimination of CD8(+) T cells completely abrogated the effects of radiation therapy. Our data suggest that IFN-γ plays a pivotal role in mediating the antitumor effects of IR therapy.
Immunology | 2011
John Puskas; Denise Skrombolas; Abigail Sedlacek; Edith M. Lord; Mark A. Sullivan; John G. Frelinger
The ability to alter the cytokine microenvironment has the potential to shape immune responses in many physiological settings, including the immunotherapy of tumours. We set out to develop a general approach in which cytokines could be functionally attenuated until activated. We report the development and initial characterization of fusion proteins in which human or mouse interleukin‐2 (IL‐2), a potent growth factor for immune cells, is joined to a specific IL‐2 inhibitory binding component separated by a protease site. The rationale is that upon cleavage by a protease the cytokine is free to dissociate from the inhibitory component and becomes biologically more available. We describe the successful development of two attenuation strategies using specific binding: the first uses the mouse IL‐2 receptor alpha chain as the inhibitory binding component whereas the second employs a human antibody fragment (scFv) reactive with human IL‐2. We demonstrated that the fusion proteins containing a prostate‐specific antigen or a matrix metalloproteinase (MMP) protease cleavage site are markedly attenuated in the intact fusion protein but had enhanced bioactivity of IL‐2 in vitro when cleaved. Further, we showed that a fusion protein composed of the IL‐2/IL‐2 receptor alpha chain with an MMP cleavage site reduced tumour growth in vivo in a peritoneal mouse tumour model. This general strategy should be applicable to other proteases and immune modulators allowing site‐specific activation of immunomodulators while reducing unwanted side‐effects.
International Journal of Cancer | 2014
Scott A. Gerber; Joanne Y.H. Lim; Kelli Connolly; Abigail Sedlacek; Margaret L. Barlow; Shawn P. Murphy; Nejat K. Egilmez; Edith M. Lord
Radiation therapy (RT) continues to be a cornerstone in the treatment for many cancers. Unfortunately, not all individuals respond effectively to RT resulting clinically in two groups consisting of nonresponders (progressive disease) and responders (tumor control/cure). The mechanisms that govern the outcome of radiotherapy are poorly understood. Interestingly, a new paradigm has emerged demonstrating that the immune system mediates many of the antitumor effects of RT. Therefore, we hypothesized that the immune response following RT may dictate the efficacy of treatment. To examine this, we developed a tumor model that mirrors this clinically relevant phenomenon in which mice bearing Colon38, a colon adenocarcinoma, were treated locally with 15Gy RT resulting in both nonresponders and responders. More importantly, we were able to distinguish responders from nonresponders as early as 4 days post‐RT allowing for the unique opportunity to identify critical events that ultimately determined the effectiveness of therapy. Intratumoral immune cells and interferon‐gamma were increased in responsive tumors and licensed CD8 T cells to exhibit lytic activity against tumor cells, a response that was diminished in tumors refractory to RT. Combinatorial treatment with RT and the immunomodulatory cytokine IL‐12 resulted in complete remission of cancer in 100% of cases compared to a cure rate of only 12% with RT alone. Similar data were obtained when IL‐12 was delivered by microspheres. Therefore, the efficacy of RT may depend on the strength of the immune response induced after radiotherapy. Additionally, immunotherapy that further stimulates the immune cells may enhance the effectiveness of RT.
Immunology | 2013
Scott A. Gerber; Elizabeth W. Sorensen; Abigail Sedlacek; Joanne Y.H. Lim; Denise Skrombolas; John G. Frelinger; Edith M. Lord
The tumour microenvironment is complex containing not only neoplastic cells but also a variety of host cells. The heterogeneous infiltrating immune cells include subsets of cells with opposing functions, whose activities are mediated either directly or through the cytokines they produce. Systemic delivery of cytokines such as interleukin‐2 ( IL‐2) has been used clinically to enhance anti‐tumour responses, but these molecules are generally thought to have evolved to act locally in a paracrine fashion. In this study we examined the effect of local production of IL‐2 on the growth and the immune response to B16 melanoma cells. We found that the local production of IL‐2 enhances the number of interferon‐γ‐expressing CD8 T and natural killer cells in the tumour, as well as inducing expression of vascular cell adhesion molecule 1 on tumour vessels. These responses were largely absent in interferon‐γ knockout mice. The expression of IL‐2 in the tumour microenvironment decreases tumour growth despite also enhancing Foxp3+ CD4+ regulatory T cells and anti‐inflammatory cytokines such as IL‐10. Higher levels of IL‐2 in the tumour microenvironment eliminated the progressive growth of the B16 cells in vivo, and this inhibition was dependent on the presence of either T cells or, to a lesser extent, natural killer cells. Surprisingly however, the B16 tumours were not completely eliminated but instead were controlled for an extended period of time, suggesting that a form of tumour dormancy was established.
American Journal of Pathology | 2013
Abigail Sedlacek; Scott A. Gerber; Troy D. Randall; Nico van Rooijen; John G. Frelinger; Edith M. Lord
Tumor cell metastasis to the peritoneal cavity is observed in patients with tumors of peritoneal organs, particularly colon and ovarian tumors. Following release into the peritoneal cavity, tumor cells rapidly attach to the omentum, a tissue consisting of immune aggregates embedded in adipose tissue. Despite their proximity to potential immune effector cells, tumor cells grow aggressively on these immune aggregates. We hypothesized that activation of the immune aggregates would generate a productive antitumor immune response in the peritoneal cavity. We immunized mice i.p. with lethally irradiated cells of the colon adenocarcinoma line Colon38. Immunization resulted in temporary enlargement of immune aggregates, and after challenge with viable Colon38 cells, we did not detect tumor growth on the omentum. When Colon38-immunized mice were challenged with cells from the unrelated breast adenocarcinoma line E0771 or the melanoma line B16, these tumors also did not grow. The nonspecific response was long-lived and not present systemically, highlighting the uniqueness of the peritoneal cavity. Cellular depletions of immune subsets revealed that NK1.1(+) cells were essential in preventing growth of unrelated tumors, whereas NK1.1(+) cells and T cells were essential in preventing Colon38 tumor growth. Collectively, these data demonstrate that the peritoneal cavity has a unique environment capable of eliciting potent specific and nonspecific antitumor immune responses.
Journal of Immunology | 2012
Scott A. Gerber; Abigail Sedlacek; Edith M. Lord
Journal of Immunology | 2012
Denise Skrombolas; John Puskas; Abigail Sedlacek; Wade C. Narrow; Michael J. Mastrangelo; William J. Bowers; Edith M. Lord; John G. Frelinger
Journal of Immunology | 2012
Abigail Sedlacek; Scott A. Gerber; Edith M. Lord