Edith M. Lord
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edith M. Lord.
Journal of Immunology | 2005
Amit A. Lugade; James P. Moran; Scott A. Gerber; Robert C. Rose; John G. Frelinger; Edith M. Lord
Immunotherapy of cancer is attractive because of its potential for specificity and limited side effects. The efficacy of this approach may be improved by providing adjuvant signals and an inflammatory environment for immune cell activation. We evaluated antitumor immune responses in mice after treatment of OVA-expressing B16-F0 tumors with single (15 Gy) or fractionated (5 × 3 Gy) doses of localized ionizing radiation. Irradiated mice had cells with greater capability to present tumor Ags and specific T cells that secreted IFN-γ upon peptide stimulation within tumor-draining lymph nodes than nonirradiated mice. Immune activation in tumor-draining lymph nodes correlated with an increase in the number of CD45+ cells infiltrating single dose irradiated tumors compared with nonirradiated mice. Similarly, irradiated mice had increased numbers of tumor-infiltrating lymphocytes that secreted IFN-γ and lysed tumor cell targets. Peptide-specific IFN-γ responses were directed against both the class I and class II MHC-restricted OVA peptides OVA257–264 and OVA323–339, respectively, as well as the endogenous class I MHC-restricted B16 tumor peptide tyrosinase-related protein 2180–188. Adoptive transfer studies indicated that the increased numbers of tumor Ag-specific immune cells within irradiated tumors were most likely due to enhanced trafficking of these cells to the tumor site. Together these results suggest that localized radiation can increase both the generation of antitumor immune effector cells and their trafficking to the tumor site.
Journal of Clinical Investigation | 1997
Shani Bialik; David L. Geenen; Isaac E. Sasson; Rendi Cheng; James W. Horner; Sydney M. Evans; Edith M. Lord; Cameron J. Koch; Richard N. Kitsis
Significant numbers of myocytes die by apoptosis during myocardial infarction. The molecular mechanism of this process, however, remains largely unexplored. To facilitate a molecular genetic analysis, we have developed a model of ischemia-induced cardiac myocyte apoptosis in the mouse. Surgical occlusion of the left coronary artery results in apoptosis, as indicated by the presence of nucleosome ladders and in situ DNA strand breaks. Apoptosis occurs mainly in cardiac myocytes, and is shown for the first time to be limited to hypoxic regions during acute infarction. Since hypoxia-induced apoptosis in other cell types is dependent on p53, and p53 is induced by hypoxia in cardiac myocytes, we investigated the necessity of p53 for myocyte apoptosis during myocardial infarction. Myocyte apoptosis occurs as readily, however, in the hearts of mice nullizygous for p53 as in wild-type littermates. These data demonstrate the existence of a p53-independent pathway that mediates myocyte apoptosis during myocardial infarction.
Journal of Immunology | 2008
Amit A. Lugade; Elizabeth W. Sorensen; Scott A. Gerber; James P. Moran; John G. Frelinger; Edith M. Lord
Alterations to the tumor microenvironment following localized irradiation may influence the effectiveness of subsequent immunotherapy. The objective of this study was to determine how IFN-γ influences the inflammatory response within this dynamic environment following radiotherapy. B16/OVA melanoma cells were implanted into C57BL/6 (wild-type (WT)) and IFN-γ-deficient (IFN-γ−/−) mice. Seven days after implantation, mice received 15 Gy of localized tumor irradiation and were assessed 7 days later. Irradiation up-regulated the expression of VCAM-1 on the vasculature of tumors grown in WT but not in IFN-γ−/− mice. Levels of the IFN-γ-inducible chemokines MIG and IFN-γ-inducible protein 10 were decreased in irradiated tumors from IFN-γ−/− mice compared with WT. In addition to inducing molecular cues necessary for T cell infiltration, surface MHC class I expression is also up-regulated in response to IFN-γ produced after irradiation. The role of IFN-γ signaling in tumor cells on class I expression was tested using B16/OVA cells engineered to overexpress a dominant negative mutant IFN-γ receptor (B16/OVA/DNM). Following implantation and treatment, expression of surface class I on tumor cells in vivo was increased in B16/OVA, but not in B16/OVA/DNM tumors, suggesting IFN-γ acts directly on tumor cells to induce class I up-regulation. These increases in MHC class I expression correlated with greater levels of activated STAT1. Thus, IFN-γ is instrumental in creating a tumor microenvironment conducive for T cell infiltration and tumor cell target recognition.
British Journal of Cancer | 1995
Cameron J. Koch; Sydney M. Evans; Edith M. Lord
The present studies were initiated to quantitate the oxygen dependence of bioreductive metabolism-induced binding of EF5, a pentafluorinated derivative of the 2-nitroimidazole, etanidazole. Two different assays were compared: first, radioactive drug incorporation into cell lysates, which provides a direct measure of drug metabolism or uptake; second, monoclonal antibody detection of cellular macromolecular adducts of EF5 after whole cell permeabilisation and fixing. The antibodies (a single clone designated ELK3-51) were conjugated with the fluorescent dye Cy3, with fluorescence determined by fluorescence microscopy and flow cytometry. For the two cell lines tested (V79 Chinese hamster fibroblasts and 9L rat glioma), the oxygen dependence of binding was found to be the same for the two techniques. Using the antibody binding technique, the fluorescence signal was highly reproducible between experiments, resistant to light or chemical bleaching and stable over time following cell or tissue staining. Flow cytometric analysis of cells from rat 9L tumours treated with EF5 in vivo or in vitro showed a distribution of fluorescent signal which was very compatible, on both a relative and absolute basis, with the in vitro results. Our results indicate that immunofluorescent techniques provide a quantitative assay for bioreductive drug adducts, and therefore may be able to measure the absolute oxygen concentration distribution in cell populations and tissues of interest.
Journal of Virology | 2001
Scott A. Gerber; Christopher Lane; Deborah M. Brown; Edith M. Lord; M. Dilorenzo; J. D. Clements; Edward P. Rybicki; A.-L. Williamson; Robert C. Rose
ABSTRACT Certain human papillomaviruses (HPVs) cause most cervical cancer, which remains a significant source of morbidity and mortality among women worldwide. HPV recombinant virus-like particles (VLPs) are promising vaccine candidates for controlling anogenital HPV disease and are now being evaluated as a parenteral vaccine modality in human subjects. Vaccines formulated for injection generally are more costly, more difficult to administer, and less acceptable to recipients than are mucosally administered vaccines. Since oral delivery represents an attractive alternative to parenteral injection for large-scale human vaccination, the oral immunogenicity of HPV type 11 (HPV-11) VLPs in mice was previously investigated; it was found that a modest systemic neutralizing antibody response was induced (R. C. Rose, C. Lane, S. Wilson, J. A. Suzich, E. Rybicki, and A. L. Williamson, Vaccine 17:2129–2135, 1999). Here we examine whether VLPs of other genotypes may also be immunogenic when administered orally and whether mucosal adjuvants can be used to enhance VLP oral immunogenicity. We show that HPV-16 and HPV-18 VLPs are immunogenic when administered orally and that oral coadministration of these antigens with Escherichia coli heat-labile enterotoxin (LT) mutant R192G (LT R192G) or CpG DNA can significantly improve anti-VLP humoral responses in peripheral blood and in genital mucosal secretions. Our results also suggest that LT R192G may be superior to CpG DNA in this ability. These findings support the concept of oral immunization against anogenital HPV disease and suggest that clinical studies involving this approach may be warranted.
Pediatric Research | 1999
Ronald I. Clyman; Cecilia Y. Chan; Françoise Mauray; Yao Qi Chen; Wesley J. Cox; Steven R. Seidner; Edith M. Lord; Hali E. Weiss; Nahid Waleh; Sydney M. Evans; Cameron J. Koch
Permanent closure of the ductus arteriosus require loss of cells from the muscle media and development of neointimal mounds, composed in part of proliferating endothelial cells. We hypothesized that postnatal ductus constriction produces hypoxia of the inner vessel wall; we also hypothesized that hypoxia might lead to cell death and the production of vascular endothelial cell growth factor (VEGF), a hypoxia-inducible growth factor that stimulates endothelial proliferation. We mapped the distribution of hypoxia in newborn baboons and correlated it with the appearance of cell death (TUNEL technique), VEGF expression, and endothelial proliferation (proliferating cell nuclear antigen expression). In the full-term baboon (n = 10), the ductus was functionally closed on Doppler examination by 24 h after delivery. Regions of the ductus where the lumen was most constricted were associated with moderate/intense hypoxia; VEGF expression was increased in the hypoxic muscle media, and luminal endothelial cells, adjacent to the hypoxic media, were proliferating. Cells in the most hypoxic regions of the ductus wall were undergoing DNA fragmentation. In contrast, regions of the ductus with mild degrees of hypoxia had no evidence of cell death, VEGF expression, or endothelial proliferation. Cell death and endothelial proliferation seemed to be limited to regions of the full-term ductus experiencing moderate/intense hypoxia. In the premature baboon (67% gestation) (n = 24), only 29% closed their ductus by Doppler examination before d 6. None of the premature baboons, including those with a closed ductus by Doppler, had evidence of moderate/intense hypoxia; also, there was no evidence of cell death, VEGF expression, endothelial proliferation, or neointima formation by d 6. Therefore, the premature ductus is resistant to developing hypoxia, even when its lumen is constricted; this may make it susceptible to later reopening.
British Journal of Cancer | 1999
Bruce M. Fenton; Scott F. Paoni; Jung Eun Lee; Cameron J. Koch; Edith M. Lord
SummaryDespite the possibility that tumour hypoxia may limit radiotherapeutic response, the underlying mechanisms remain poorly understood. A new methodology has been developed in which information from several sophisticated techniques is combined and analysed at a microregional level. First, tumour oxygen availability is spatially defined by measuring intravascular blood oxygen saturations (HbO2) cryospectrophotometrically in frozen tumour blocks. Second, hypoxic development is quantified in adjacent sections using immunohistochemical detection of a fluorescently conjugated monoclonal antibody (ELK3-51) to a nitroheterocyclic hypoxia marker (EF5), thereby providing information relating to both the oxygen consumption rates and the effective oxygen diffusion distances. Third, a combination of fluorescent (Hoechst 33342 or DiOC7(3)) and immunohistological (PECAM-1/CD31) stains is used to define the anatomical vascular densities and the fraction of blood vessels containing flow. Using a computer-interfaced microscope stage, image analysis software and a 3-CCD colour video camera, multiple images are digitized, combined to form a photo-montage and revisited after each of the three staining protocols. By applying image registration techniques, the spatial distribution of HbO2 saturations is matched to corresponding hypoxic marker intensities in adjacent sections. This permits vascular configuration to be related to oxygen availability and allows the hypoxic marker intensities to be quantitated in situ.
Biology of Reproduction | 2012
B. Anne Croy; Zhilin Chen; Alexander P. Hofmann; Edith M. Lord; Abigail Sedlacek; Scott A. Gerber
ABSTRACT In species with endometrial decidualization and hemochorial placentation (humans, mice, and others), leukocytes localize to early implant sites and contribute to decidual angiogenesis, spiral arterial remodeling, and trophoblast invasion. Relationships between leukocytes, trophoblasts, and the decidual vasculature are not fully defined. Early C57BL/6J implant sites were analyzed by flow cytometry to define leukocyte subsets and by whole-mount immunohistochemistry to visualize relationships between leukocytes, decidual vessels, and trophoblasts. Ptprc+ (CD45+) cells increased in decidua between Gestational Day (GD) 5.5 and GD 9.5. Uterine natural killer (uNK) cells that showed dynamic expression of Cd (CD) 69, an activating receptor, and Klrg1 (KLRG1), an inhibitory receptor, localized mesometrially and were the dominant CD45+ cells between GD 5.5 and GD 7.5. At GD 8.5, immature monocytes that occurred throughout decidua exceeded uNK cells numerically and many leukocytes acquired irregular shapes, and leukocyte-leukocyte conjugates became frequent. Vessels were morphologically heterogeneous and regionally unique. Migrating trophoblasts were first observed at GD 6.5 and, at GD 9.5, breached endothelium, entered vascular lumens, and appeared to occlude some vessels, as described for human spiral arteries. No leukocyte-trophoblast conjugates were detected. Whole-mount staining gave unparalleled decidual vascular detail and cell-specific positional information. Its application across murine models of pregnancy disturbances should significantly advance our understanding of the maternal-fetal interface.
Immunology | 2001
D. Brown; Terrence L. Fisher; Chungwen Wei; John G. Frelinger; Edith M. Lord
Tumour cells transfected with cDNAs encoding non‐self proteins were used to investigate the ability of the immune system to respond to immunogenic antigens expressed by tumours. Secreted, intracellular and surface proteins were used as model antigens, as these reflect the potential forms of tumour antigens. Syngeneic BALB/c mice injected with viable line 1 lung carcinoma or EMT6 mammary tumour cells secreting ovalbumin (OVA) or prostate‐specific antigen (PSA) produced very high immunoglobulin G (IgG) antibody titres, equivalent to those of mice injected with protein in Freunds complete adjuvant (FCA). Secretion of the antigens was not necessary as tumour cells expressing a cell‐surface antigen (HER‐2/Neu) or an intracellular antigen – green fluorescence protein (GFP) – also generated high‐titre antigen‐specific IgG antibodies. In interleukin‐4 (IL‐4)‐deficient mice, both IgG1 and IgG2a were produced in response to OVA administered in FCA, whereas in response to tumour‐produced antigen, the antibodies switched from predominantly IgG1 to IgG2a, indicating that the mechanisms responsible for antibody induction differed between these forms of immunization. In contrast to the line 1 and EMT6 tumours, which are of BALB/c origin, OVA‐ or PSA‐producing B16 melanoma cells, which are of C57BL/6 origin, failed to elicit antibody production. This was not the result of strain differences, as a similar finding was observed when the tumours were grown in (BALB/c × C57BL/6)F1 mice, but appeared to be caused by intrinsic differences in the tumours. Furthermore, co‐injection of both B16/OVA and line 1 tumours resulted in production of anti‐OVA antibody, indicating that B16 tumours were not immunosuppressive, but instead line 1 tumours appear to exert an adjuvant effect.
Cancer Immunology, Immunotherapy | 2014
Joanne Y.H. Lim; Scott A. Gerber; Shawn P. Murphy; Edith M. Lord
The need for an intact immune system for cancer radiation therapy to be effective suggests that radiation not only acts directly on the tumor but also indirectly, through the activation of host immune components. Recent studies demonstrated that endogenous type I interferons (type I IFNs) play a role in radiation-mediated anti-tumor immunity by enhancing the ability of dendritic cells to cross-prime CD8+ T cells. However, it is still unclear to what extent endogenous type I IFNs contribute to the recruitment and function of CD8+ T cells. Little is also known about the effects of type I IFNs on myeloid cells. In the current study, we demonstrate that type I and type II IFNs (IFN-γ) are both required for the increased production of CXCL10 (IP-10) chemokine by myeloid cells within the tumor after radiation treatment. Radiation-induced intratumoral IP-10 levels in turn correlate with tumor-infiltrating CD8+ T cell numbers. Moreover, type I IFNs promote potent tumor-reactive CD8+ T cells by directly affecting the phenotype, effector molecule production, and enhancing cytolytic activity. Using a unique inducible expression system to increase local levels of IFN-α exogenously, we show here that the capacity of radiation therapy to result in tumor control can be enhanced. Our preclinical approach to study the effects of local increase in IFN-α levels can be used to further optimize the combination therapy strategy in terms of dosing and scheduling, which may lead to better clinical outcome.