Abinaya Priya Venkataraman
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abinaya Priya Venkataraman.
Journal of Vision | 2014
Robert Rosén; Linda Lundström; Abinaya Priya Venkataraman; Simon Winter; Peter Unsbo
Measuring the contrast sensitivity function (CSF) in the periphery of the eye is complicated. The lengthy measurement time precludes all but the most determined subjects. The aim of this study was to implement and evaluate a faster routine based on the quick CSF method (qCSF) but adapted to work in the periphery. Additionally, normative data is presented on neurally limited peripheral CSFs. A peripheral qCSF measurement using 100 trials can be performed in 3 min. The precision and accuracy were tested for three subjects under different conditions (number of trials, peripheral angles, and optical corrections). The precision for estimates of contrast sensitivity at individual spatial frequencies was 0.07 log units when three qCSF measurements of 100 trials each were averaged. Accuracy was estimated by comparing the qCSF results with a more traditional measure of CSF. Average accuracy was 0.08 log units with no systematic error. In the second part of the study, we collected three CSFs of 100 trials for six persons in the 20° nasal, temporal, inferior, and superior visual fields. The measurements were performed in an adaptive optics system running in a continuous closed loop. The Tukey HSD test showed significant differences (p < 0.05) between all fields except between the nasal and the temporal fields. Contrast sensitivity was higher in the horizontal fields, and the inferior field was better than the superior. This modified qCSF method decreases the measurement time significantly and allows otherwise unfeasible studies of the peripheral CSF.
Optometry and Vision Science | 2016
Abinaya Priya Venkataraman; Simon Winter; Robert Rosén; Linda Lundström
Purpose Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Methods Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. Results For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Conclusions Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation.
Vision Research | 2015
Abinaya Priya Venkataraman; Simon Winter; Peter Unsbo; Linda Lundström
A prolonged exposure to foveal defocus is well known to affect the visual functions in the fovea. However, the effects of peripheral blur adaptation on foveal vision, or vice versa, are still unclear. In this study, we therefore examined the changes in contrast sensitivity function from baseline, following blur adaptation to small as well as laterally extended stimuli in four subjects. The small field stimulus (7.5° visual field) was a 30min video of forest scenery projected on a screen and the large field stimulus consisted of 7-tiles of the 7.5° stimulus stacked horizontally. Both stimuli were used for adaptation with optical blur (+2.00D trial lens) as well as for clear control conditions. After small field blur adaptation foveal contrast sensitivity improved in the mid spatial frequency region. However, these changes neither spread to the periphery nor occurred for the large field blur adaptation. To conclude, visual performance after adaptation is dependent on the lateral extent of the adaptation stimulus.
Vision Research | 2017
Abinaya Priya Venkataraman; Peter Lewis; Peter Unsbo; Linda Lundström
ABSTRACT Optimal temporal modulation of the stimulus can improve foveal contrast sensitivity. This study evaluates the characteristics of the peripheral spatiotemporal contrast sensitivity function in normal‐sighted subjects. The purpose is to identify a temporal modulation that can potentially improve the remaining peripheral visual function in subjects with central visual field loss. High contrast resolution cut‐off for grating stimuli with four temporal frequencies (0, 5, 10 and 15 Hz drift) was first evaluated in the 10° nasal visual field. Resolution contrast sensitivity for all temporal frequencies was then measured at four spatial frequencies between 0.5 cycles per degree (cpd) and the measured stationary cut‐off. All measurements were performed with eccentric optical correction. Similar to foveal vision, peripheral contrast sensitivity is highest for a combination of low spatial frequency and 5–10 Hz drift. At higher spatial frequencies, there was a decrease in contrast sensitivity with 15 Hz drift. Despite this decrease, the resolution cut‐off did not vary largely between the different temporal frequencies tested. Additional measurements of contrast sensitivity at 0.5 cpd and resolution cut‐off for stationary (0 Hz) and 7.5 Hz stimuli performed at 10, 15, 20 and 25° in the nasal visual field also showed the same characteristics across eccentricities.
Journal of The Optical Society of America A-optics Image Science and Vision | 2015
Simon Winter; Mohammad Taghi Fathi; Abinaya Priya Venkataraman; Robert Rosén; Anne Seidemann; Gregor Esser; Linda Lundström; Peter Unsbo
Transverse chromatic aberration (TCA) is one of the largest optical errors affecting the peripheral image quality in the human eye. However, the effect of chromatic aberrations on our peripheral vision is largely unknown. This study investigates the effect of prism-induced horizontal TCA on vision, in the central as well as in the 20° nasal visual field, for four subjects. Additionally, the magnitude of induced TCA (in minutes of arc) was measured subjectively in the fovea with a Vernier alignment method. During all measurements, the monochromatic optical errors of the eye were compensated for by adaptive optics. The average reduction in foveal grating resolution was about 0.032 ± 0.005 logMAR/arcmin of TCA (mean ± std). For peripheral grating detection, the reduction was 0.057 ± 0.012 logMAR/arcmin. This means that the prismatic effect of highly dispersive spectacles may reduce the ability to detect objects in the peripheral visual field.
Optometry and Vision Science | 2018
Peter Lewis; Abinaya Priya Venkataraman; Linda Lundström
SIGNIFICANCE In the field of visual rehabilitation of patients with central visual field loss (CFL), knowledge on how peripheral visual function can be improved is essential. This study presents measurements of peripheral dynamic contrast sensitivity (with optical correction) for off-axis viewing angles in subjects with CFL. PURPOSE Subjects with CFL rely on a peripheral preferred retinal locus (PRL) for many visual tasks. It is therefore important to ascertain that contrast sensitivity (CS) is maximized in the PRL. This study evaluates the effect of stimulus motion, in combination with optical correction, on CS in subjects with CFL. METHODS The off-axis refractive errors in the PRL of five young CFL subjects were measured with a COAS open-view Hartmann-Shack aberrometer. Low-contrast (25% and 10%) and high-contrast resolution acuity for stationary gratings was assessed with and without optical correction. High-contrast resolution was also measured for gratings drifting at 7.5 Hz (within a fixed Gaussian window). Furthermore, resolution CS was evaluated for both stationary and moving gratings with optical correction for a total of two to three spatial frequencies per subject. RESULTS High-contrast resolution acuity was relatively insensitive to stimulus drift motion of 7.5 Hz, whereas CS for gratings of 0.5 cycles per degree improved with drift for all subjects. Furthermore, both high- and low-contrast static resolution improved with optical correction. CONCLUSIONS Just as for healthy eyes, stimulus motion of 7.5 Hz enhances CS for gratings of low spatial frequency also in the PRL of eyes with CFL. Concurrently, high-contrast resolution is unaffected by the 7.5-Hz drift but improves with off-axis optical correction. This highlights the importance of providing optimal refractive correction for subjects with CFL and that stimulus motion can be used to further enhance CS at low spatial frequencies.
Vision Research | 2017
Abinaya Priya Venkataraman; Aiswaryah Radhakrishnan; Carlos Dorronsoro; Linda Lundström; Susana Marcos
ABSTRACT The blur experienced by our visual system is not uniform across the visual field. Additionally, lens designs with variable power profile such as contact lenses used in presbyopia correction and to control myopia progression create variable blur from the fovea to the periphery. The perceptual changes associated with varying blur profile across the visual field are unclear. We therefore measured the perceived neutral focus with images of different angular subtense (from 4° to 20°) and found that the amount of blur, for which focus is perceived as neutral, increases when the stimulus was extended to cover the parafovea. We also studied the changes in central perceived neutral focus after adaptation to images with similar magnitude of optical blur across the image or varying blur from center to the periphery. Altering the blur in the periphery had little or no effect on the shift of perceived neutral focus following adaptation to normal/blurred central images. These perceptual outcomes should be considered while designing bifocal optical solutions for myopia or presbyopia.
Investigative Ophthalmology & Visual Science | 2016
Abinaya Priya Venkataraman; Peter Lewis; Linda Lundström
Archive | 2016
Abinaya Priya Venkataraman; Peter Lewis; Peter Unsbo; Linda Lundström
Archive | 2016
Peter Lewis; Abinaya Priya Venkataraman; Linda Lundström