Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Lundström is active.

Publication


Featured researches published by Linda Lundström.


Journal of Neural Transmission | 2007

Intramembrane receptor-receptor interactions: a novel principle in molecular medicine

Kjell Fuxe; Meritxell Canals; M. Torvinen; Daniel Marcellino; Anton Terasmaa; Susanna Genedani; Giuseppina Leo; Diego Guidolin; Zaida Díaz-Cabiale; Alicia Rivera; Linda Lundström; Ülo Langel; José Ángel Narváez; Sergio Tanganelli; Carmen Lluis; Sergi Ferré; Amina S. Woods; Rafael Franco; Luigi F. Agnati

Summary.In 1980/81 Agnati and Fuxe introduced the concept of intramembrane receptor–receptor interactions and presented the first experimental observations for their existence in crude membrane preparations. The second step was their introduction of the receptor mosaic hypothesis of the engram in 1982. The third step was their proposal that the existence of intramembrane receptor–receptor interactions made possible the integration of synaptic (WT) and extrasynaptic (VT) signals. With the discovery of the intramembrane receptor–receptor interactions with the likely formation of receptor aggregates of multiple receptors, so called receptor mosaics, the entire decoding process becomes a branched process already at the receptor level in the surface membrane. Recent developments indicate the relevance of cooperativity in intramembrane receptor–receptor interactions namely the presence of regulated cooperativity via receptor–receptor interactions in receptor mosaics (RM) built up of the same type of receptor (homo-oligomers) or of subtypes of the same receptor (RM type1). The receptor–receptor interactions will to a large extent determine the various conformational states of the receptors and their operation will be dependent on the receptor composition (stoichiometry), the spatial organization (topography) and order of receptor activation in the RM. The biochemical and functional integrative implications of the receptor–receptor interactions are outlined and long-lived heteromeric receptor complexes with frozen RM in various nerve cell systems may play an essential role in learning, memory and retrieval processes. Intramembrane receptor–receptor interactions in the brain have given rise to novel strategies for treatment of Parkinson’s disease (A2A and mGluR5 receptor antagonists), schizophrenia (A2A and mGluR5 agonists) and depression (galanin receptor antagonists). The A2A/D2, A2A/D3 and A2A/mGluR5 heteromers and heteromeric complexes with their possible participation in different types of RM are described in detail, especially in the cortico-striatal glutamate synapse and its extrasynaptic components, together with a postulated existence of A2A/D4 heteromers. Finally, the impact of intramembrane receptor–receptor interactions in molecular medicine is discussed outside the brain with focus on the endocrine, the cardiovascular and the immune systems.


Neuromolecular Medicine | 2005

Galanin and its receptors in neurological disorders.

Linda Lundström; Anna Elmquist; Tamas Bartfai; Ülo Langel

Galanin is a highly inducible neuropeptide, showing distinct up-regulation after pathological disturbance within the nervous system. Significant increase in galanin expression is observed after peripheral nerve injury, in the basal forebrain in Alzheimer’s disease (AD), during neuronal development, and after stimulation with estrogen, while seizure activity deplete galanin in the hippocampus. A wide distribution of galanin and its receptors is seen in the nervous system, often in co-localization with classical neurotransmitters and other neuromodulators. Galanin acts predominantly as an inhibitory, hyperpolarizing neuromodulator on neurotransmitter and glucose-induced insulin release and stimulates growth hormone and prolactin secretion. Galanin has been implicated in several higher order physiological functions including cognition, feeding, nociception, mood regulation, and neuroendocrine modulation. The effects of galanin are mediated via three G protein-coupled receptors with different functional coupling. Moderate to low pharmacological effects are seen by galanin under physiological conditions, in contrast to its dramatic effects on the nervous system after neuronal disturbance. This pathophysiological heavy function of the galaninergic system renders it an interest for disorders such as AD, depression, and epilepsy in terms of side effects. Some properties of the galaninergic system are of particular importance in the context of neurodegeneration. Galanin is highly inducible, 10- to 100-fold, upon nerve injury, whereas most neuropeptides are induced 1.5- to 2-fold. Galanin is strongly neurotrophic during development as well as subsequent to injury. Whereas other neurotrophic neuropeptides like VIP and PACAP activate cAMP synthesis, galanin suppresses its synthesis, yet it is a strong neurotrophic as well as neuroprotective agent. As we delineate which galanin receptor subtype mediates neuroprotective and neurotrophic effects and which mediates synaptic inhibition, pharmacological use of receptor-selective galaninergic ligands for treatment in neurodegenerative diseases are coming closer.


Journal of Pharmacology and Experimental Therapeutics | 2006

Regulation of Kindling Epileptogenesis by Hippocampal Galanin Type 1 and Type 2 Receptors: The Effects of Subtype-Selective Agonists and the Role of G-Protein-Mediated Signaling

Andrey Mazarati; Linda Lundström; Ulla E. Sollenberg; Don Shin; Ülo Langel; Raman Sankar

The search for antiepileptic drugs that are capable of blocking the progression of epilepsy (epileptogenesis) is an important problem of translational epilepsy research. The neuropeptide galanin effectively suppresses acute seizures. We examined the ability of hippocampal galanin receptor type 1 (GalR1) and type 2 (GalR2) to inhibit kindling epileptogenesis and studied signaling cascades that mediate their effects. Wistar rats received 24-h-long intrahippocampal infusion of a GalR1/2 agonist galanin(1-29), GalR1 agonist M617 [galanin(1-13)-Gln14-bradykinin(2-9)-amide], or GalR2 agonist galanin(2-11). The peptides were administered alone or combined with an inhibitor of Gi protein pertussis toxin (PTX), Gi-protein activated K+ channels (GIRK) inhibitor tertiapin Q (TPQ), Gq/11 protein inhibitor [d-Arg1,d-Trp5,7,9,Leu11]-substance P (dSP), or an inhibitor of intracellular Ca2+ release dantrolene. Sixteen hours into drug delivery, the animals were subjected to rapid kindling—60 electrical trains administered to ventral hippocampus every 5 min. M617 delayed epileptogenesis, whereas galanin(1-29) and galanin(2-11) completely prevented the occurrence of full kindled seizures. TPQ abolished anticonvulsant effect of M617 but not of galanin(2-11). PTX blocked anticonvulsant effects of M617 and inversed the action of galanin(1-29) and galanin(2-11) to proconvulsant. dSP and dantrolene did not modify seizure suppression through GalR1 and GalR2, but eliminated the proconvulsant effect of PTX + galanin(1-29) and PTX + galanin(2-11) combinations. We conclude that hippocampal GalR1 exert their disease-modifying effect through the Gi-GIRK pathway. GalR2 is antiepileptogenic through the Gi mechanism independent of GIRK. A secondary proconvulsant pathway coupled to GalR2 involves Gq/11 and intracellular Ca2+. The data are important for understanding endogenous mechanisms regulating epileptogenesis and for the development of novel antiepileptogenic drugs.


Neuropsychopharmacology | 2008

Differential Role of Galanin Receptors in the Regulation of Depression-Like Behavior and Monoamine/Stress-Related Genes at the Cell Body Level

Eugenia Kuteeva; T. Wardi; Linda Lundström; Ulla E. Sollenberg; Ülo Langel; Tomas Hökfelt; Sven Ove Ögren

The present study on rat examined the role of galanin receptor subtypes in regulation of depression-like behavior as well as potential molecular mechanisms involved in the locus coeruleus (LC) and dorsal raphe (DR). The effect of intracerebroventricular (i.c.v.) infusion of galanin or galanin receptor GalR1- and GalR2-selective ligands was studied in the forced swim test, followed by quantitative in situ hybridization studies. Naive control, non-treated (swim control), saline- and fluoxetine-treated rats were used as controls in the behavioral and in situ hybridization studies. Subchronic treatment with fluoxetine reduced immobility and climbing time. Intracerebroventricular infusion of galanin, the GalR1 agonist M617 or the GalR2 antagonist M871 increased, while the GalR2(R3) agonist AR-M1896 decreased, immobility time compared to the aCSF-treated animals. Galanin also decreased the time of climbing. Galanin mRNA levels were upregulated by the combination of injection+swim stress in the saline- and the fluoxetine-treated groups in the LC, but not in the DR. Also tyrosine hydroxylase levels in the LC were increased following injection+swim stress in the saline- and fluoxetine-treated rats. Tryptophan hydroxylase 2 and serotonin transporter mRNAs were not significantly affected by any treatment. 5-HT1A mRNA levels were downregulated following i.c.v. galanin, M617 or AR-M1896 infusion. These results indicate a differential role of galanin receptor subtypes in depression-like behavior in rodents: GalR1 subtype may mediate ‘prodepressive’ and GalR2 ‘antidepressant’ effects of galanin. Galanin has a role in behavioral adaptation to stressful events involving changes of molecules important for noradrenaline and/or serotonin transmission.


Neuropeptides | 2005

Galanin (2-11) binds to GalR3 in transfected cell lines : limitations for pharmacological definition of receptor subtypes

Xiaoying Lu; Linda Lundström; Tamas Bartfai

The neuropeptide galanin regulates a variety of physiological and pathophysiological processes through three G protein coupled receptors, GalR1, GalR2, and GalR3. The studies on galanin receptor subtype specific effects have been hampered by the lack of high affinity subtype selective antagonist and/or agonist to any of these three galanin receptor subtypes. Since its recent introduction in 2003, galanin (2-11) has been widely used as a GalR2 selective agonist in several in vitro and in vivo studies. In the present paper, we demonstrate that galanin (2-11) binds to rat GalR3 receptors in transfected cell lines with a similar affinity as it binds to GalR2. As none of the available antagonists are galanin receptor subtype selective, as shown here for M35 and M40, more work is needed to confirm whether a galanin (2-11) effect is GalR2 mediated and there is an urgent need for high affinity galanin receptor subtype selective ligands. For now one needs to interpret the data obtained at lower galanin (2-11) concentrations as effects mediated by non-GalR1 type galanin receptors, i.e., GalR2 and/or GalR3.


Neuropeptides | 2005

Galanin receptor ligands

Xiaoying Lu; Linda Lundström; Ülo Langel; Tamas Bartfai

The three galanin receptor subtypes (GalR1-3) belong to the G protein-coupled receptor superfamily. The widespread distribution of galanin and its receptors in the CNS and PNS and the numerous physiological and pharmacological effects of galanin (for review, cf. Vrontakis, 2002) render the three galanin receptors attractive drug targets. The industrial efforts, however, have not yet resulted in a wealth of receptor subtype specific agonists or antagonists with high affinity and selectivity. The present paper summarizes the properties of the galanin ligands used at the end of 2004 in the ca. 2000 publications and complements their pharmacological characterization with new data.


International Journal of Peptide Research and Therapeutics | 2006

M871—A Novel Peptide Antagonist Selectively Recognizing the Galanin Receptor Type 2

Ulla E. Sollenberg; Linda Lundström; Tamas Bartfai; Ülo Langel

Galanin and its three receptors have been linked to a wide variety of physiological processes and are distributed in both the central and peripheral nervous systems. Further knowledge of the properties of galanin-activated signaling systems can best be obtained by the availability of peptide and non-peptide ligands that are selective for the different receptor subtypes. The current study describes binding and signaling data for the chimeric peptide, galanin-(2–13)-Glu-His-(Pro)3-(Ala-Leu)2-Ala-amide (M871). This compound binds to the galanin receptor type 2 with more than 30-fold higher affinity than to the galanin receptor type 1 and exhibits antagonist actions at galanin receptor type 2, blocking increased release of inositol phosphate produced by galanin in CHO cells. This peptide opens new possibilities for the study of galanin receptor physiology.


Peptides | 2007

Intracerebroventricular administration of galanin or galanin receptor subtype 1 agonist M617 induces c-Fos activation in central amygdala and dorsomedial hypothalamus

Alice L. Blackshear; Mihoko Yamamoto; Brenda J. Anderson; Philip V. Holmes; Linda Lundström; Ülo Langel; John K. Robinson

The neuropeptide galanin and galanin receptors are widespread throughout cortical, limbic and midbrain areas implicated in reward, learning/memory, pain, drinking and feeding. While many studies have shown that galanin produces a variety of presynaptic and post-synaptic responses, work studying the effects of galanin on neural activation is limited. The present study examined patterns of c-Fos immunoreactivity resulting from intracerebroventricular administration of galanin versus saline injection in awake rats. An initial comprehensive qualitative survey was conducted to identify regions of high c-Fos expression followed up with quantitative analysis. Galanin induced a significant increase in c-Fos levels relative to saline-treated controls in dorsomedial hypothalamus and in the central nucleus of the amygdala. This pattern of activation was also produced by galanin receptor type 1 agonist M617. The present findings confirm that galanin upregulates c-Fos activation in hypothalamic nuclei, and supports roles for galanin in central amygdala-mediated regulation of stress-responses, food intake, and Pavlovian conditioning.


Neuropeptides | 2005

Multiple interaction sites of galnon trigger its biological effects

Anders Florén; Ulla E. Sollenberg; Linda Lundström; Matjaž Zorko; Jure Stojan; Metka V. Budihna; Mark Wheatley; Negin P. Martin; Kalle Kilk; Andrey Mazarati; Tamas Bartfai; Maria Lindgren; Ülo Langel

Galnon was first reported as a low molecular weight non-peptide agonist at galanin receptors [Saar et al. (2002) Proc. Natl. Acad. Sci. USA 99, 7136-7141]. Following its systemic administration, this synthetic ligand affected a range of important physiological processes including appetite, seizures and pain. Physiological activity of galnon could not be explained solely by the activation of the three known galanin receptors, GalR1, GalR2 and GalR3. Consequently, it was possible that galnon generates its manifold effects by interacting with other signaling pathway components, in addition to via GalR1-3. In this report, we establish that galnon: (i) can penetrate across the plasma membrane of cells, (ii) can activate intracellular G-proteins directly independent of receptor activation thereby triggering downstream signaling, (iii) demonstrates selectivity for different G-proteins, and (iiii) is a ligand to other G-protein coupled receptors (GPCRs) in addition to via GalR1-3. We conclude that galnon has multiple sites of interaction within the GPCR signaling cascade which mediate its physiological effects.


Pharmacology, Biochemistry and Behavior | 2006

Activation of peripheral galanin receptors: differential effects on nociception.

Juan Miguel Jimenez-Andrade; Linda Lundström; Ulla E. Sollenberg; Ülo Langel; Gilberto Castañeda-Hernández; Susan M. Carlton

Numerous reports suggest a significant role of peripheral galanin (GAL) in pain transmission; however, due to the lack of selective galanin receptor agonists and antagonists, the role of GAL receptors (GalR1-3) in pain transmission remains unclear. In this study, a new agonist, M617, that preferentially binds to GalR1, a GalR2 agonist (AR-M1896), and a GalR2 antagonist (M871) were tested in the periphery to elucidate the role of peripheral GalR1 and GalR2 in nociception. Ipsilateral, but not contralateral, hindpaw injection of M617 reduced capsaicin (CAP)-induced flinching by approximately 50%, suggesting that GalR1 activation produces anti-nociception. This anti-nociceptive effect was blocked by intraplantar injection of the non-selective GalR antagonist M35. In contrast ipsilateral, but not contralateral, intraplantar injection of GalR2 agonist AR-M1896 enhanced the CAP-induced nociception (1.7-fold). The GalR2 antagonist M871 blocked the pro-nociceptive effect of AR-M1896 in a dose-dependent manner. This antagonist had no effect on nociceptive behaviors induced by CAP alone. The data demonstrate that activation of peripheral GalR1 results in anti-nociception but activation of peripheral GalR2 produces pro-nociception. Thus, the use of these pharmacological tools may help to elucidate the contribution of GalR subtypes in nociceptive processing, identifying potential drug targets for the treatment of peripheral pain.

Collaboration


Dive into the Linda Lundström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamas Bartfai

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoying Lu

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge