Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abraha Habtemariam is active.

Publication


Featured researches published by Abraha Habtemariam.


Chemical Communications | 2012

Designing organometallic compounds for catalysis and therapy.

Anna Louisa Noffke; Abraha Habtemariam; Ana M. Pizarro; Peter J. Sadler

Bioorganometallic chemistry is a rapidly developing area of research. In recent years organometallic compounds have provided a rich platform for the design of effective catalysts, e.g. for olefin metathesis and transfer hydrogenation. Electronic and steric effects are used to control both the thermodynamics and kinetics of ligand substitution and redox reactions of metal ions, especially Ru(II). Can similar features be incorporated into the design of targeted organometallic drugs? Such complexes offer potential for novel mechanisms of drug action through incorporation of outer-sphere recognition of targets and controlled activation features based on ligand substitution as well as metal- and ligand-based redox processes. We focus here on η(6)-arene, η(5)-cyclopentadienyl sandwich and half-sandwich complexes of Fe(II), Ru(II), Os(II) and Ir(III) with promising activity towards cancer, malaria, and other conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Catalytic organometallic anticancer complexes

Sarah J. Dougan; Abraha Habtemariam; Sarah E. McHale; Simon Parsons; Peter J. Sadler

Organometallic complexes offer chemistry that is not accessible to purely organic molecules and, hence, potentially new mechanisms of drug action. We show here that the presence of both an iodido ligand and a σ-donor/π-acceptor phenylazopyridine ligand confers remarkable inertness toward ligand substitution on the half-sandwich “piano-stool” ruthenium arene complexes [(η6-arene)Ru(azpy)I]+ (where arene = p-cymene or biphenyl, and azpy = N,N-dimethylphenyl- or hydroxyphenyl-azopyridine) in aqueous solution. Surprisingly, despite this inertness, these complexes are highly cytotoxic to human ovarian A2780 and human lung A549 cancer cells. Fluorescence-trapping experiments in A549 cells suggest that the cytotoxicity arises from an increase in reactive oxygen species. Redox activity of these azopyridine RuII complexes was confirmed by electrochemical measurements. The first one-electron reduction step (half-wave potential −0.2 to −0.4 V) is assignable to reduction of the azo group of the ligand. In contrast, the unbound azopyridine ligands are not readily reduced. Intriguingly the ruthenium complex acted as a catalyst in reactions with the tripeptide glutathione (γ-l-Glu-l-Cys-Gly), a strong reducing agent present in cells at millimolar concentrations; millimolar amounts of glutathione were oxidized to glutathione disulfide in the presence of micromolar ruthenium concentrations. A redox cycle involving glutathione attack on the azo bond of coordinated azopyridine is proposed. Such ligand-based redox reactions provide new concepts for the design of catalytic drugs.


Angewandte Chemie | 2014

The Potent Oxidant Anticancer Activity of Organoiridium Catalysts

Zhe Liu; Isolda Romero-Canelón; Bushra Qamar; Jessica M. Hearn; Abraha Habtemariam; Nicolas P. E. Barry; Ana M. Pizarro; Guy J. Clarkson; Peter J. Sadler

Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5-Cpxbiph)Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C∧N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5-Cpxbiph)Ir(phpy)(py)]+ (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.


Journal of Inorganic Biochemistry | 2010

In vivo tumour and metastasis reduction and in vitro effects on invasion assays of the ruthenium RM175 and osmium AFAP51 organometallics in the mammary cancer model

Alberta Bergamo; A. Masi; Anna F. A. Peacock; Abraha Habtemariam; Peter J. Sadler; Gianni Sava

We have compared the organometallic arene complexes [(eta(6)-biphenyl)M(ethylenediamine)Cl](+) RM175 (M=Ru(II)) and its isostructural osmium(II) analogue AFAP51 (M=Os(II)) for their ability to induce cell detachment resistance from fibronectin, collagen IV and poly-l-lysine, and cell re-adhesion after treatment, their effects on cell migration and cell viability, on matrix metalloproteinases production, and on primary tumour growth of MCa mammary carcinoma, the effect of human serum albumin on their cytotoxicity. There are differences between ruthenium and osmium. The Os complex is up to 6x more potent than RM175 towards highly-invasive breast MDA-MB-231, human breast MCF-7 and human epithelial HBL-100 cancer cells, but whereas RM175 was active against MCa mammary carcinoma in vivo and caused metastasis reduction, AFAP51 was not. Intriguingly the presence of human serum albumin in the growth medium enhanced the cytotoxicity of both compounds. RM175 increased the resistance of MDA-MB-231 cells to detachment from substrates and both compounds inhibited the production of MMP-2. These data confirm the key role of ruthenium itself in anti-metastatic activity. It will be interesting to explore the activity of osmium arene complexes in other tumour models and the possibility of changing the non-arene ligands to tune the anticancer activity of osmium in vivo.


Archive | 2010

Activation mechanisms for organometallic anticancer complexes

Ana M. Pizarro; Abraha Habtemariam; Peter J. Sadler

Organometallic complexes offer potential for design as anticancer drugs. They can act as inert scaffolds and specifically inhibit enzymes such as kinases, or as pro-drugs which undergo activation by various mechanisms. The activation of metallocenes, arene, alkyl or aryl complexes by hydrolysis, and metal- or ligand-based redox reactions is discussed.


Nature Communications | 2015

Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design

Joan J. Soldevila-Barreda; Isolda Romero-Canelón; Abraha Habtemariam; Peter J. Sadler

Organometallic complexes are effective hydrogenation catalysts for organic reactions. For example, Noyori-type ruthenium complexes catalyse reduction of ketones by transfer of hydride from formate. Here we show that such catalytic reactions can be achieved in cancer cells, offering a new strategy for the design of safe metal-based anticancer drugs. The activity of ruthenium(II) sulfonamido ethyleneamine complexes towards human ovarian cancer cells is enhanced by up to 50 × in the presence of low non-toxic doses of formate. The extent of conversion of coenzyme NAD+ to NADH in cells is dependent on formate concentration. This novel reductive stress mechanism of cell death does not involve apoptosis or perturbation of mitochondrial membrane potentials. In contrast, iridium cyclopentadienyl catalysts cause cancer cell death by oxidative stress. Organometallic complexes therefore have an extraordinary ability to modulate the redox status of cancer cells.


Angewandte Chemie | 2012

Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor

Soledad Betanzos-Lara; Zhe Liu; Abraha Habtemariam; Ana M. Pizarro; Bushra Qamar; Peter J. Sadler

Artificial enzymes: half-sandwich arene ruthenium(II) and cyclopentadienyl iridium(III) complexes containing N,N-chelated ligands can use NADH as a source of hydride for the reduction of ketones. Moreover, cyclopentadienyl phenanthroline iridium(III) derivatives at micromolar concentrations are robust catalysts for the production of H(2) from NADH in water and can raise the NAD(+)/NADH ratio in cancer cells.


Journal of Medicinal Chemistry | 2010

Organometallic osmium arene complexes with potent cancer cell cytotoxicity

Ying Fu; Abraha Habtemariam; Ana M. Pizarro; Sabine H. van Rijt; David J. Healey; Patricia A. Cooper; Steven D. Shnyder; Guy J. Clarkson; Peter J. Sadler

Iodido osmium(II) complexes [Os(η(6)-arene)(XY)I](+) (XY = p-hydroxy or p-dimethylaminophenylazopyridine, arene = p-cymene or biphenyl) are potently cytotoxic at nanomolar concentrations toward a panel of human cancer cell lines; e.g., IC(50) = 140 nM for [Os(η(6)-bip)(azpy-NMe(2))I](+) toward A2780 ovarian cancer cells. They exhibit low toxicity and negligible deleterious effects in a colon cancer xenograft model, giving rise to the possibility of a broad therapeutic window. The most active complexes are stable and inert toward aquation. Their cytotoxic activity appears to involve redox mechanisms.


Chemical Communications | 2004

Half-sandwich arene ruthenium(II)–enzyme complex

Iain W. McNae; Katy Fishburne; Abraha Habtemariam; Tina M. Hunter; Michael Melchart; Fuyi Wang; Malcolm D. Walkinshaw; Peter J. Sadler

The 1.6 [Angstrom] X-ray crystal structure of [(eta(6)-p-cymene)Ru(lysozyme)Cl(2)], the first of a half-sandwich complex of a protein, shows selective ruthenation of Nepsilon of the imidazole ring of His15.


Inorganic Chemistry | 2009

Ruthenium(II) arene anticancer complexes with redox-active diamine ligands

Tijana Bugarcic; Abraha Habtemariam; Robert J. Deeth; Francesca P. A. Fabbiani; Simon Parsons; Peter J. Sadler

The synthesis and characterization of ruthenium(II) arene complexes of the general formula [(eta(6)-arene)Ru(XY)Z](+), where arene = p-cymene (p-cym), hexamethylbenzene (hmb), or biphenyl (bip), XY = o-phenylenediamine (o-pda), o-benzoquinonediimine (o-bqdi), or 4,5-dimethyl-o-phenylenediamine (dmpda), and Z = Cl, Br, or I, are reported (complexes 1-6). In addition, the X-ray crystal structures of [(eta(6)-p-cym)Ru(o-pda)Cl]PF(6) (1) and [(eta(6)-hmb)Ru(o-bqdi)Cl]PF(6) (3PF(6)) are described. The Ru-N distances in 3PF(6) are significantly shorter [2.033(4) and 2.025(4) A] compared to those in 1 [2.141(2) and 2.156(2) A]. All of the imine complexes (3-5) exhibit a characteristic broad (1)H NMR NH resonance at ca. delta 14-15. Complex 1 undergoes concomitant ligand-based oxidation and hydrolysis (38% after 24 h) in water. The oxidation also occurs in methanol. The iodido complex [(eta(6)-p-cym)Ru(o-bqdi)I]I (4) did not undergo hydrolysis, whereas the chlorido complex 3 showed relatively fast hydrolysis (t(1/2) = 7.5 min). Density functional theory calculations showed that the total bonding energy of 9-EtG in [(eta(6)-p-cym)Ru(o-pda)(9-EtG-N7)](2+) (1EtG) is 23.8 kJ/mol lower than that in [(eta(6)-p-cym)Ru(o-bqdi)(9-EtG-N7)](2+) (3EtG). The greater bonding energy is related to the contribution from strong hydrogen bonding between the NH proton of the chelating ligand and O6 of 9-EtG (1.69 A). A loss of cytotoxic activity was observed upon oxidation of the amine ligand to an imine (e.g., IC(50) = 11 microM for 1 and IC(50) > 100 microM for 3, against A2780 ovarian cancer cells). The relationship between the cytotoxic activity and the solution and solid state structures of the imine and amine complexes is discussed.

Collaboration


Dive into the Abraha Habtemariam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Salassa

Donostia International Physics Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viktor Brabec

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Fu

University of Warwick

View shared research outputs
Researchain Logo
Decentralizing Knowledge