Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abraham Scaria is active.

Publication


Featured researches published by Abraham Scaria.


Molecular Therapy | 2011

Preclinical safety evaluation of AAV2-sFLT01- a gene therapy for age-related macular degeneration.

Timothy K. MacLachlan; Michael Lukason; Margaret E Collins; Robert Munger; Elisabete Isenberger; Cindy Rogers; Shana Malatos; Elizabeth DuFresne; James E. Morris; Roberto Calcedo; Gabor Veres; Abraham Scaria; Laura Andrews; Samuel C. Wadsworth

AAV2-sFLT01 is a vector that expresses a modified soluble Flt1 receptor designed to neutralize the proangiogenic activities of vascular endothelial growth factor (VEGF) for treatment of age-related macular degeneration (AMD) via an intravitreal injection. Owing to minimal data available for the intravitreal route of administration for adeno-associated virus (AAV), we initiated a 12-month safety study of AAV2-sFLT01 administered intravitreally at doses of 2.4 × 10(9) vector genomes (vg) and 2.4 × 10(10) vg to cynomolgus monkeys. Expression of sFlt01 protein peaked at ~1-month postadministration and remained relatively constant for the remainder of the study. Electroretinograms, fluorescein angiograms, and tonometry were assessed every 3 months, with no test article-related findings observed in any group. Indirect ophthalmoscopy and slit lamp exams performed monthly revealed a mild to moderate but self-resolving vitreal inflammation in the high-dose group only, which follow-up studies suggest was directed against the AAV2 capsid. Histological evaluation revealed no structural changes in any part of the eye and occasional inflammatory cells in the trabecular meshwork, vitreous and retina in the high-dose group. Biodistribution analysis in rats and monkeys found only trace amounts of vector outside the injected eye. In summary, these studies found AAV2-sFLT01 to be well-tolerated, localized, and capable of long-term expression.


Gene Therapy | 1997

Antibody to CD40 ligand inhibits both humoral and cellular immune responses to adenoviral vectors and facilitates repeated administration to mouse airway

Abraham Scaria; Ja St George; Richard J. Gregory; Rj Noelle; Samuel C. Wadsworth; Alan E. Smith; Johanne Kaplan

Adenoviral vectors have been used successfully to transfer the human CFTR cDNA to respiratory epithelium in animal models and to CF patients in vivo. However, studies done primarily in mice, indicate that present vector systems have limitations. Among other things, transgene expression in the lung is transient and the production of neutralizing antibodies against adenovirus correlates with a reduced ability to readminister a vector of the same serotype. Here we demonstrate that in mice, a transient blockade of costimulation between activated T cells and B cells/antigen presenting cells using a monoclonal antibody (MR1) against murine CD40 ligand inhibits the development of neutralizing antibodies to adenoviral (Ad) vector. MR1 also decreased the cellular immune response to Ad vector and allowed an increase in persistence of transgene expression. Furthermore, when administered with a second dose of Ad vector to mice preimmunized against vector, MR1 was able to interfere with the development of a secondary antibody response and allowed for high levels of transgene expression upon a third administration of vector to the airway.


Gene Therapy | 2009

Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization.

Peter Pechan; Hillard Rubin; Michael Lukason; J Ardinger; Elizabeth DuFresne; William W. Hauswirth; Samuel C. Wadsworth; Abraham Scaria

Vascular endothelial growth factor (VEGF) is important in pathological neovascularization, which is a key component of diseases such as the wet form of age-related macular degeneration, proliferative diabetic retinopathy and cancer. One of the most potent naturally occurring VEGF binders is VEGF receptor Flt-1. We have generated two novel chimeric VEGF-binding molecules, sFLT01 and sFLT02, which consist of the second immunoglobulin (IgG)-like domain of Flt-1 fused either to a human IgG1 Fc or solely to the CH3 domain of IgG1 Fc through a polyglycine linker 9Gly. In vitro analysis showed that these novel molecules are high-affinity VEGF binders. We have demonstrated that adeno-associated virus serotype 2 (AAV2)-mediated intravitreal gene delivery of sFLT01 efficiently inhibits angiogenesis in the mouse oxygen-induced retinopathy model. There were no histological observations of toxicity upon persistent ocular expression of sFLT01 for up to 12 months following intravitreal AAV2-based delivery in the rodent eye. Our data suggest that AAV2-mediated intravitreal gene delivery of our novel molecules may be a safe and effective treatment for retinal neovascularization.


Diabetes | 2008

Murine Antithymocyte Globulin Therapy Alters Disease Progression in NOD Mice by a Time-Dependent Induction of Immunoregulation

Greg Simon; Matthew Parker; Vijayakumar K. Ramiya; Clive Wasserfall; Yanfei Huang; Damien Bresson; R. Fletcher Schwartz; Martha Campbell-Thompson; Lauren Tenace; Todd M. Brusko; Song Xue; Abraham Scaria; Michael Lukason; Scott Eisenbeis; John M. Williams; Michael Clare-Salzler; Desmond A. Schatz; Bruce Kaplan; Matthias von Herrath; Karl L. Womer; Mark A. Atkinson

OBJECTIVE—Antilymphocyte serum can reverse overt type 1 diabetes in NOD mice; yet, the therapeutic parameters and immunological mechanisms underlying the ability for this agent to modulate autoimmune responses against β-cells are unclear, forming the rationale for this investigation. RESEARCH DESIGN AND METHODS—A form of antilymphocyte serum, rabbit anti-mouse thymocyte globulin (mATG), was utilized in a variety of in vivo and in vitro settings, each for the purpose of defining the physiological, immunological, and metabolic activities of this agent, with particular focus on actions influencing development of type 1 diabetes. RESULTS—We observed that mATG attenuates type 1 diabetes development in an age-dependent fashion, only proving efficacious at disease onset or in the late pre-diabetic phase (12 weeks of age). When provided at 12 weeks of age, mATG reversed pancreatic insulitis, improved metabolic responses to glucose challenge, and rapidly increased frequency of antigen-presenting cells in spleen and pancreatic lymph nodes. Surprisingly, mATG therapy dramatically increased, in an age-dependent fashion, the frequency and the functional activity of CD4+CD25+ regulatory T-cells. Adoptive transfer/cotransfer studies of type 1 diabetes also support the concept that mATG treatment induces a stable and transferable immunomodulatory repertoire in vivo. CONCLUSIONS—These findings indicate that an induction of immunoregulation, rather than simple lymphocyte depletion, contributes to the therapeutic efficacy of antithymocyte globulin and suggest that time-dependent windows for the ability to delay or reverse type 1 diabetes exist based on the capacity to enhance the functional activity of regulatory T-cells.


Molecular Therapy | 2011

Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule.

Michael Lukason; Elizabeth DuFresne; Hillard Rubin; Peter Pechan; Qiuhong Li; Ivana K. Kim; Szilard Kiss; Christina J. Flaxel; Margaret E Collins; Joan W. Miller; William W. Hauswirth; Timothy K. MacLachlan; Samuel C. Wadsworth; Abraham Scaria

Inhibition of vascular endothelial growth factor (VEGF) for the management of the pathological ocular neovascularization associated with diseases such as neovascular age-related macular degeneration is a proven paradigm; however, monthly intravitreal injections are required for optimal treatment. We have previously shown that a novel, secreted anti-VEGF molecule sFLT01 delivered by intravitreal injection of an AAV2 vector (AAV2-sFLT01) gives persistent expression and is efficacious in a murine model of retinal neovascularization. In the present study, we investigate transduction and efficacy of an intravitreally administered AAV2-sFLT01 in a nonhuman primate (NHP) model of choroidal neovascularization (CNV). A dose-dependent and persistent expression of sFLT01 was observed by collecting samples of aqueous humor at different time points over 5 months. The location of transduction as elucidated by in situ hybridization was in the transitional epithelial cells of the pars plana and in retinal ganglion cells. AAV2-sFLT01 was able to effectively inhibit laser-induced CNV in a dose-dependent manner as determined by comparing the number of leaking CNV lesions in the treated versus control eyes using fluorescein angiography. Our data suggest that intravitreal delivery of AAV2-sFLT01 may be an effective long-term treatment for diseases caused by ocular neovascularization.


Molecular Therapy | 2017

CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10

Guoxiang Ruan; Elizabeth Barry; Dan Yu; Michael Lukason; Seng H. Cheng; Abraham Scaria

As the most common subtype of Leber congenital amaurosis (LCA), LCA10 is a severe retinal dystrophy caused by mutations in the CEP290 gene. The most frequent mutation found in patients with LCA10 is a deep intronic mutation in CEP290 that generates a cryptic splice donor site. The large size of the CEP290 gene prevents its use in adeno-associated virus (AAV)-mediated gene augmentation therapy. Here, we show that targeted genomic deletion using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system represents a promising therapeutic approach for the treatment of patients with LCA10 bearing the CEP290 splice mutation. We generated a cellular model of LCA10 by introducing the CEP290 splice mutation into 293FT cells and we showed that guide RNA pairs coupled with SpCas9 were highly efficient at removing the intronic splice mutation and restoring the expression of wild-type CEP290. In addition, we demonstrated that a dual AAV system could effectively delete an intronic fragment of the Cep290 gene in the mouse retina. To minimize the immune response to prolonged expression of SpCas9, we developed a self-limiting CRISPR/Cas9 system that minimizes the duration of SpCas9 expression. These results support further studies to determine the therapeutic potential of CRISPR/Cas9-based strategies for the treatment of patients with LCA10.


Journal of Virology | 2003

Mutations within the ADP (E3-11.6K) Protein Alter Processing and Localization of ADP and the Kinetics of Cell Lysis of Adenovirus-Infected Cells

Ann E. Tollefson; Abraham Scaria; Baoling Ying; William S. M. Wold

ABSTRACT ADP (also known as E3-11.6K protein) is synthesized abundantly in late adenovirus infection and is required for efficient lysis of infected cells and release of viral progeny at the end of the viral replication cycle. ADP is a type III bitopic NendoCexo nuclear membrane and Golgi glycoprotein that is produced at high levels in late adenovirus infection (>24 h postinfection). We show pulse-chase and other studies indicating that ADP undergoes a complex process of N- and O-linked glycosylation and proteolytic cleavage. In order to further characterize ADP, a series of 23 deletion and point mutations has been constructed in the adenovirus serotype 2 adp gene and then built into a wild-type adenovirus background. These mutants were analyzed for processing and intracellular localization of ADP. Mutation of the single predicted N glycosylation site eliminated N glycosylation. Deletion of a region in ADP rich in serine and threonine residues reduced O glycosylation. In general, mutations within the lumenal domain of ADP resulted in lower protein stability; immunofluorescence assays indicated that these ADPs were primarily present in the Golgi apparatus. Viruses with mutations within the cytoplasmic-nucleoplasmic domain of ADP showed normal glycosylation patterns and protein abundance for ADP, but the protein was often found throughout cellular membranes rather than being localized specifically to the nuclear membrane and Golgi apparatus. The ADP virus mutants were analyzed by cell viability assays to determine the kinetics of cell lysis following infection of human A549 cells. In general, viruses with mutations within the lumenal domain of ADP display greatly reduced efficiencies of cell lysis. Viruses with large deletions in the cytoplasmic-nucleoplasmic domain of ADP retain much of their ability to lyse infected cells.


The Lancet | 2017

Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial

Jeffrey S. Heier; Saleema Kherani; Shilpa J. Desai; Pravin U. Dugel; Shalesh Kaushal; Seng H. Cheng; Cheryl Delacono; Annie Purvis; Susan Richards; Annaig Le-Halpere; John Connelly; Samuel C. Wadsworth; Rafael Varona; Ronald Buggage; Abraham Scaria; Peter A. Campochiaro

BACKGROUND Long-term intraocular injections of vascular endothelial growth factor (VEGF)-neutralising proteins can preserve central vision in many patients with neovascular age-related macular degeneration. We tested the safety and tolerability of a single intravitreous injection of an AAV2 vector expressing the VEGF-neutralising protein sFLT01 in patients with advanced neovascular age-related macular degeneration. METHODS This was a phase 1, open-label, dose-escalating study done at four outpatient retina clinics in the USA. Patients were assigned to each cohort in order of enrolment, with the first three patients being assigned to and completing the first cohort before filling positions in the following treatment groups. Patients aged 50 years or older with neovascular age-related macular degeneration and a baseline best-corrected visual acuity score of 20/100 or less in the study eye were enrolled in four dose-ranging cohorts (cohort 1, 2 × 108 vector genomes (vg); cohort 2, 2 × 109 vg; cohort 3, 6 × 109 vg; and cohort 4, 2 × 1010 vg, n=3 per cohort) and one maximum tolerated dose cohort (cohort 5, 2 × 1010 vg, n=7) and followed up for 52 weeks. The primary objective of the study was to assess the safety and tolerability of a single intravitreous injection of AAV2-sFLT01, through the measurement of eye-related adverse events. This trial is registered with ClinicalTrials.gov, number NCT01024998. FINDINGS 19 patients with advanced neovascular age-related macular degeneration were enrolled in the study between May 18, 2010, and July 14, 2014. All patients completed the 52-week trial period. Two patients in cohort 4 (2 × 1010 vg) experienced adverse events that were possibly study-drug related: pyrexia and intraocular inflammation that resolved with a topical steroid. Five of ten patients who received 2 × 1010 vg had aqueous humour concentrations of sFLT01 that peaked at 32·7-112·0 ng/mL (mean 73·7 ng/mL, SD 30·5) by week 26 with a slight decrease to a mean of 53·2 ng/mL at week 52 (SD 17·1). At baseline, four of these five patients were negative for anti-AAV2 serum antibodies and the fifth had a very low titre (1:100) of anti-AAV2 antibodies, whereas four of the five non-expressers of sFLT01 had titres of 1:400 or greater. In 11 of 19 patients with intraretinal or subretinal fluid at baseline judged to be reversible, six showed substantial fluid reduction and improvement in vision, whereas five showed no fluid reduction. One patient in cohort 5 showed a large decrease in vision between weeks 26 and 52 that was not thought to be vector-related. INTERPRETATION Intravitreous injection of AAV2-sFLT01 seemed to be safe and well tolerated at all doses. Additional studies are needed to identify sources of variability in expression and anti-permeability activity, including the potential effect of baseline anti-AAV2 serum antibodies. FUNDING Sanofi Genzyme, Framingham, MA, USA.


PLOS ONE | 2014

Interleukin-17 retinotoxicity is prevented by gene transfer of a soluble interleukin-17 receptor acting as a cytokine blocker: implications for age-related macular degeneration.

Daniel Ardeljan; Yujuan Wang; Stanley Park; Defen Shen; Xi Kathy Chu; Cheng Rong Yu; Mones Abu-Asab; Jingsheng Tuo; Charles G. Eberhart; Timothy W. Olsen; Robert F. Mullins; Gary A. White; Sam Wadsworth; Abraham Scaria; Chi-Chao Chan

Age-related macular degeneration (AMD) is a common yet complex retinal degeneration that causes irreversible central blindness in the elderly. Pathology is widely believed to follow loss of retinal pigment epithelium (RPE) and photoreceptor degeneration. Here we report aberrant expression of interleukin-17A (IL17A) and the receptor IL17RC in the macula of AMD patients. In vitro, IL17A induces RPE cell death characterized by the accumulation of cytoplasmic lipids and autophagosomes with subsequent activation of pro-apoptotic Caspase-3 and Caspase-9. This pathology is reduced by siRNA knockdown of IL17RC. IL17-dependent retinal degeneration in a mouse model of focal retinal degeneration can be prevented by gene therapy with adeno-associated virus vector encoding soluble IL17 receptor. This intervention rescues RPE and photoreceptors in a MAPK-dependent process. The IL17 pathway plays a key role in RPE and photoreceptor degeneration and could hold therapeutic potential in AMD.


Cardiovascular Research | 2002

Adenovirus-mediated expression of p35 prevents hypoxia/reoxygenation injury by reducing reactive oxygen species and caspase activity

Taro Date; Adam J. Belanger; Seibu Mochizuki; Jennifer Sullivan; Louis X. Liu; Abraham Scaria; Seng H. Cheng; Richard J. Gregory; Canwen Jiang

OBJECTIVE This study aimed to examine the effects of adenovirus-mediated expression of p35, a baculovirus gene, on apoptosis induced by hypoxia/reoxygenation (H/R) in cardiomyocytes. METHODS Neonatal rat cardiomyocytes were infected with recombinant adenoviral vectors expressing p35 (Ad2/CMVp35) or no transgene (Ad2/CMVEV) and were then subjected to H/R. Separate groups of non-infected cardiomyocytes were treated with pharmacological caspase inhibitors or antioxidants. Cell viability, apoptosis, caspase activity, and cellular reactive oxygen species (ROS) were measured using various assays. RESULTS H/R decreased cell viability and increased cellular ROS levels, caspase activity, and cell apoptosis. Infection with Ad2/CMVp35 effectively inhibited the increase in cellular ROS levels, the activities of caspases 3 and 8, apoptosis, and cell death following H/R, whereas Ad2/CMVEV had no effect. Despite its ability to abolish the increase in caspase activity and partially inhibit apoptosis, the pan-caspase inhibitor ZVAD-fmk (100 microM) failed to significantly reduce cell death induced by H/R. N-acetyl-L-cysteine, an antioxidant, completely inhibited H/R-induced increase in cellular ROS levels, but reduced apoptosis and cell death by 30% only. CONCLUSIONS Adenovirus-mediated expression of p35 effectively inhibits H/R-induced cardiomyocyte apoptosis by reducing cellular ROS levels and inhibiting caspase activity.

Collaboration


Dive into the Abraham Scaria's collaboration.

Researchain Logo
Decentralizing Knowledge