Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seng H. Cheng is active.

Publication


Featured researches published by Seng H. Cheng.


Cell | 1990

Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis

Seng H. Cheng; Richard J. Gregory; John Marshall; Sucharita Paul; David W. Souza; Gary A. White; Catherine R. O'Riordan; Alan E. Smith

The gene associated with cystic fibrosis (CF) encodes a membrane-associated, N-linked glycoprotein called CFTR. Mutations were introduced into CFTR at residues known to be altered in CF chromosomes and in residues believed to play a role in its function. Examination of the various mutant proteins in COS-7 cells indicated that mature, fully glycosylated CFTR was absent from cells containing delta F508, delta 1507, K464M, F508R, and S5491 cDNA plasmids. Instead, an incompletely glycosylated version of the protein was detected. We propose that the mutant versions of CFTR are recognized as abnormal and remain incompletely processed in the endoplasmic reticulum where they are subsequently degraded. Since mutations with this phenotype represent at least 70% of known CF chromosomes, we argue that the molecular basis of most cystic fibrosis is the absence of mature CFTR at the correct cellular location.


Cell | 1991

Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel

Seng H. Cheng; Devra P. Rich; John Marshall; Richard J. Gregory; Michael J. Welsh; Alan E. Smith

CFTR, the protein associated with cystic fibrosis, is phosphorylated on serine residues in response to cAMP agonists. Serines 660, 737, 795, and 813 were identified as in vivo targets for phosphorylation by protein kinase A. The SPQ fluorescence assay revealed that mutagenesis of any one of these sites did not affect Cl- channel activity. Indeed, concomitant mutagenesis of three of the four sites still resulted in cAMP-responsive Cl- channel activity. However, mutagenesis of all four sites abolished the response. One interpretation of these results is that the CFTR Cl- channel is blocked by the R domain and that phosphorylation on serines by protein kinase A electrostatically repels the domain, allowing passage of Cl-. The four phosphorylation events appear to be degenerate: no one site is essential for channel activity, and, at least in the case of serine 660, phosphorylation at one site alone is sufficient for regulation of Cl- channel activity.


The Lancet | 1999

Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial

Eric W. F. W. Alton; M. Stern; Raymond Farley; Adam Jaffe; Sharon Chadwick; J. Phillips; Justin E. Davies; Stephen N. Smith; J. Browning; M. G. Davies; Margaret E. Hodson; Stephen R. Durham; D. Li; Peter K. Jeffery; M. Scallan; Rp Balfour; S. J. Eastman; Seng H. Cheng; Alan E. Smith; Dp Meeker; Duncan M. Geddes

BACKGROUND We and others have previously reported significant changes in chloride transport after cationic-lipid-mediated transfer of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to the nasal epithelium of patients with cystic fibrosis. We studied the safety and efficacy of this gene transfer to the lungs and nose of patients with cystic fibrosis in a double-blind placebo-controlled trial. METHODS Eight patients with cystic fibrosis were randomly assigned DNA-lipid complex (active) by nebulisation into the lungs followed 1 week later by administration to the nose. Eight control patients followed the same protocol but with the lipid alone (placebo). Safety was assessed clinically, by radiography, by pulmonary function, by induced sputum, and by histological analysis. Efficacy was assessed by analysis of vector-specific CFTR DNA and mRNA, in-vivo potential difference, epifluorescence assay of chloride efflux, and bacterial adherence. FINDINGS Seven of the eight patients receiving the active complex reported mild influenza-like symptoms that resolved within 36 h. Six of eight patients in both the active and placebo groups reported mild airway symptoms over a period of 12 h following pulmonary administration. No specific treatment was required for either event. Pulmonary administration resulted in a significant (p<0.05) degree of correction of the chloride abnormality in the patients receiving active treatment but not in those on placebo when assessed by in-vivo potential difference and chloride efflux. Bacterial adherence was also reduced. We detected no alterations in the sodium transport abnormality. A similar pattern occurred following nasal administration. INTERPRETATION Cationic-lipid-mediated CFTR gene transfer can significantly influence the underlying chloride defect in the lungs of patients with cystic fibrosis.


Neuron | 2012

Sustained Therapeutic Reversal of Huntington's Disease by Transient Repression of Huntingtin Synthesis

Holly Kordasiewicz; Lisa M. Stanek; Edward Wancewicz; Curt Mazur; Melissa McAlonis; Kimberly A. Pytel; Jonathan W. Artates; Andreas Weiss; Seng H. Cheng; Lamya S. Shihabuddin; Gene Hung; C. Frank Bennett; Don W. Cleveland

The primary cause of Huntingtons disease (HD) is expression of huntingtin with a polyglutamine expansion. Despite an absence of consensus on the mechanism(s) of toxicity, diminishing the synthesis of mutant huntingtin will abate toxicity if delivered to the key affected cells. With antisense oligonucleotides (ASOs) that catalyze RNase H-mediated degradation of huntingtin mRNA, we demonstrate that transient infusion into the cerebrospinal fluid of symptomatic HD mouse models not only delays disease progression but mediates a sustained reversal of disease phenotype that persists longer than the huntingtin knockdown. Reduction of wild-type huntingtin, along with mutant huntingtin, produces the same sustained disease reversal. Similar ASO infusion into nonhuman primates is shown to effectively lower huntingtin in many brain regions targeted by HD pathology. Rather than requiring continuous treatment, our findings establish a therapeutic strategy for sustained HD disease reversal produced by transient ASO-mediated diminution of huntingtin synthesis.


Nature | 2012

Targeting nuclear RNA for in vivo correction of myotonic dystrophy

Thurman M. Wheeler; Andrew Leger; Sanjay K. Pandey; A. Robert MacLeod; Masayuki Nakamori; Seng H. Cheng; Bruce M. Wentworth; C. Frank Bennett; Charles A. Thornton

Antisense oligonucleotides (ASOs) hold promise for gene-specific knockdown in diseases that involve RNA or protein gain-of-function effects. In the hereditary degenerative disease myotonic dystrophy type 1 (DM1), transcripts from the mutant allele contain an expanded CUG repeat and are retained in the nucleus. The mutant RNA exerts a toxic gain-of-function effect, making it an appropriate target for therapeutic ASOs. However, despite improvements in ASO chemistry and design, systemic use of ASOs is limited because uptake in many tissues, including skeletal and cardiac muscle, is not sufficient to silence target messenger RNAs. Here we show that nuclear-retained transcripts containing expanded CUG (CUGexp) repeats are unusually sensitive to antisense silencing. In a transgenic mouse model of DM1, systemic administration of ASOs caused a rapid knockdown of CUGexp RNA in skeletal muscle, correcting the physiological, histopathologic and transcriptomic features of the disease. The effect was sustained for up to 1 year after treatment was discontinued. Systemically administered ASOs were also effective for muscle knockdown of Malat1, a long non-coding RNA (lncRNA) that is retained in the nucleus. These results provide a general strategy to correct RNA gain-of-function effects and to modulate the expression of expanded repeats, lncRNAs and other transcripts with prolonged nuclear residence.


Annals of the New York Academy of Sciences | 1995

Improved Cationic Lipid Formulations for In Vivo Gene Therapy

Philip L. Felgner; Yali J. Tsai; Loretta Sukhu; Carl J. Wheeler; Marston Manthorpe; John Marshall; Seng H. Cheng

The problem of assessing in vivo activity of gene delivery systems is complex. The reporter gene must be carefully chosen depending on the application. Plasmids with strong promoters, enhancers and other elements that optimize transcription and translation should be employed, such as the CMVint and pCIS-CAT constructs. Formulation aspects of cationic lipid-DNA complexes are being studied in several laboratories, and the physical properties and molecular organization of the complexes are being elucidated. Likewise, studies on the mechanism of DNA delivery with cationic lipids are accumulating which support the basic concept that the complexes fuse with biological membranes leading to the entry of intact DNA into the cytoplasm. Naked plasmid DNA administered by various routes is expressed at significant levels in vivo. This observation is not restricted to skeletal and heart muscle, but has been observed in lung, dermis, and in undefined tissues following intravenous administration. Most of the widely available cationic lipids, including Lipofectin, Lipofectamine and DC-cholesterol have a very poor ability to enhance DNA expression above the baseline naked DNA level, at least in lung. In this report we have revealed a novel cationic lipid, DLRIE, which can significantly enhance CAT expression in mouse lung by 25-fold above the naked DNA level. Other compounds are currently being evaluated which can enhance the naked DNA expression even higher. Plasmid vector improvements have led to further increase in in vivo lung expression, so that the net improvement is > 5,000-fold. Results of this nature are advancing the pharmaceutical gene therapy opportunities for synthetic cationic lipid based gene delivery systems.


Biochimica et Biophysica Acta | 1997

Biophysical characterization of cationic lipid:DNA complexes

Simon J. Eastman; Craig S. Siegel; Jennifer D. Tousignant; Alan E. Smith; Seng H. Cheng; Ronald K. Scheule

To better understand the structures formed by the interaction of cationic lipids with DNA, we undertook a systematic analysis to determine the biophysical characteristics of cationic lipid:DNA complexes. Four model cationic lipids with different net cationic charge were found to interact in similar ways with DNA when that interaction was compared in terms of the apparent molar charge ratio of lipid to DNA. When DNA was present in charge excess over the cationic lipid, the complex carried a net negative charge as determined by zeta potential measurements. Under these conditions, some DNA was accessible to ethidium bromide, and free DNA was observed in agarose gels and in dextran density gradients. Between a lipid:DNA charge ratio of 1.25 and 1.5:1, all the DNA became complexed to cationic lipid, as evidenced by its inaccessibility to EtBr and its complete association with lipid upon agarose gel electrophoresis and density gradient separations. These complexes carried a net positive charge. The transition between negatively and positively charged complexes a occurred over a very small range of lipid to DNA ratios. Employing a fluorescent lipid probe, the addition of DNA was shown to induce lipid mixing between cationic lipid-containing vesicles. The extent of DNA-induced lipid mixing reached a maximum at a charge ratio of about 1.5:1, the point at which all the DNA was involved in a complex and the complex became positively charged. Together with freeze-fracture electron micrographs of the complexes, these biophysical data have been interpreted in light of the existing models of cationic lipid:DNA complexes.


Nature Biotechnology | 2008

CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression

Stephen C. Hyde; Ian A. Pringle; Syahril Abdullah; A.E Lawton; Lee A. Davies; A Varathalingam; G Nunez-Alonso; Anne-Marie Green; R.P Bazzani; Stephanie G. Sumner-Jones; Mario Chan; Hongyu Li; N.S Yew; Seng H. Cheng; A C Boyd; Jane C. Davies; U Griesenbach; David J. Porteous; David N. Sheppard; Felix M. Munkonge; Eric W. F. W. Alton; Deborah R. Gill

Pulmonary delivery of plasmid DNA (pDNA)/cationic liposome complexes is associated with an acute unmethylated CG dinucleotide (CpG)-mediated inflammatory response and brief duration of transgene expression. We demonstrate that retention of even a single CpG in pDNA is sufficient to elicit an inflammatory response, whereas CpG-free pDNA vectors do not. Using a CpG-free pDNA expression vector, we achieved sustained (≥56 d) in vivo transgene expression in the absence of lung inflammation.


Annals of Neurology | 2011

Acid β‐glucosidase mutants linked to gaucher disease, parkinson disease, and lewy body dementia alter α‐synuclein processing

Valerie Cullen; S. Pablo Sardi; Juliana Ng; You-Hai Xu; Ying Sun; Julianna J. Tomlinson; Piotr Kolodziej; Ilana Kahn; Paul Saftig; John Woulfe; Jean-Christophe Rochet; Marcie A. Glicksman; Seng H. Cheng; Gregory A. Grabowski; Lamya S. Shihabuddin; Michael G. Schlossmacher

Heterozygous mutations in the GBA1 gene elevate the risk of Parkinson disease and dementia with Lewy bodies; both disorders are characterized by misprocessing of α‐synuclein (SNCA). A loss in lysosomal acid–β‐glucosidase enzyme (GCase) activity due to biallelic GBA1 mutations underlies Gaucher disease. We explored mechanisms for the genes association with increased synucleinopathy risk.


Molecular and Cellular Biology | 1991

Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2

Richard J. Gregory; D. P. Rich; Seng H. Cheng; Dw Souza; Sucharita Paul; Parthasarathy Manavalan; Matthew P. Anderson; M. J. Welsh; Alan E. Smith

One feature of the mutations thus far found to be associated with the disease cystic fibrosis (CF) is that many of them are clustered within the first nucleotide-binding domain (NBD) of the CF transmembrane conductance regulator (CFTR). We sought to discover the molecular basis for this clustering by introducing into the two NBDs of CFTR mutations either mimicking amino acid changes associated with CF or altering residues within highly conserved motifs. Synthesis and maturation of the mutant CFTR were studied by transient expression in COS cells. The ability of the altered proteins to generate cyclic AMP-stimulated anion efflux was assessed by using 6-methoxy-N-(sulfopropyl) quinolinium (SPQ) fluorescence measurements in HeLa cells expressing mutated plasmids. The results show that (i) all CF-associated mutants, with one exception, lack functional activity as measured in the SPQ assay, (ii) mutations in NBD1 are more sensitive to the effects of the same amino acid change than are the corresponding mutations in NBD2, (iii) cells transfected with plasmids bearing CF-associated mutations commonly but not exclusively lack mature CFTR, (iv) NBD mutants lacking mature CFTR fail to activate Cl- channels, and (v) the glycosylation of CFTR, per se, is not required for CFTR function. We reason that the structure of NBD1 itself or of the surrounding domains renders it particularly sensitive to mutational changes. As a result, most NBD1 mutants, but only a few NBD2 mutants, fail to mature or lack functional activity. These findings are consistent with the observed uneven distribution of CFTR missense mutations between NBD1 and NBD2 of CF patients.

Collaboration


Dive into the Seng H. Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric W. F. W. Alton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane C. Davies

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge