Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abul Mandal is active.

Publication


Featured researches published by Abul Mandal.


The Plant Cell | 2003

INFLORESCENCE DEFICIENT IN ABSCISSION Controls Floral Organ Abscission in Arabidopsis and Identifies a Novel Family of Putative Ligands in Plants

Melinka A. Butenko; Sara E. Patterson; Paul E. Grini; Grethe-Elisabeth Stenvik; Silja S. Amundsen; Abul Mandal; Reidunn B. Aalen

Abscission is an active process that enables plants to shed unwanted organs. Because the purpose of the flower is to facilitate pollination, it often is abscised after fertilization. We have identified an Arabidopsis ethylene-sensitive mutant, inflorescence deficient in abscission (ida), in which floral organs remain attached to the plant body after the shedding of mature seeds, even though a floral abscission zone develops. The IDA gene, positioned in the genomic DNA flanking the single T-DNA present in the ida line, was identified by complementation. The gene encodes a small protein with an N-terminal signal peptide, suggesting that the IDA protein is the ligand of an unknown receptor involved in the developmental control of floral abscission. We have identified Arabidopsis genes, and cDNAs from a variety of plant species, that encode similar proteins, which are distinct from known ligands. IDA and the IDA-like proteins may represent a new class of ligands in plants.


Transgenic Research | 2001

The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors

Trine J. Meza; Dyre Kamfjord; Anne-Mari Håkelien; Ingerlise Evans; Linda H. Godager; Abul Mandal; Kjetill S. Jakobsen; Reidunn B. Aalen

In a collection of 111 transgenic Arabidopsis thaliana lines, silencing of the nptII gene was observed in 62 (56%) of the lines and three distinct nptII-silencing phenotypes were identified. Two T-DNA constructs were used, which differed in distance and orientation of the marker gene relative to the border sequences. Comparison of the sets of lines generated with each vector, indicate that the T-DNA construct configuration influence the incidence of lines displaying silencing, as well as the distribution of silencing phenotypes. Twenty lines were investigated more thoroughly. The frequency of silencing varied between siblings in 19 lines, including three lines containing a single T-DNA copy. The last line showed 100% silencing. The gus gene present in both constructs could be expressed in the presence of a silenced nptII gene. Investigation of methylation at a single site in the pnos promoter revealed partial methylation in multi-copy lines, but no methylation in single-copy lines. For 16 lines, the overall frequencies of silencing differed significantly between control plants and plants exposed to temperature stress; in 11 of these lines at the 0.1% level. In several cases, the frequency of silencing in progeny of stress-treated plants was higher than for the control group, while other lines showed higher frequencies of kanamycin-resistant progeny for the stress-treated sibling plants.


Toxicological Sciences | 2013

Increases in Oxidized Low-Density Lipoprotein and Other Inflammatory and Adhesion Molecules With a Concomitant Decrease in High-Density Lipoprotein in the Individuals Exposed to Arsenic in Bangladesh

Md. Rezaul Karim; Mashiur Rahman; Khairul Islam; Abdullah Al Mamun; Shakhawoat Hossain; Ekhtear Hossain; Abdul Aziz; Fouzia Yeasmin; Smita Agarwal; Md. Imam Hossain; Zahangir Alam Saud; Farjana Nikkon; Mostaque Hossain; Abul Mandal; R. O. Jenkins; Parvez I. Haris; Hideki Miyataka; Seiichiro Himeno; Khaled Hossain

Elevated exposure to arsenic has been suggested to be associated with atherosclerosis leading to cardiovascular disease (CVD). However, biochemical events underlying the arsenic-induced atherosclerosis have not yet been fully documented. The aim of this study was to investigate the associations of circulating molecules involved in atherosclerosis with arsenic exposure in the individuals exposed to arsenic in Bangladesh. A total of 324 study subjects, 218 from arsenic-endemic areas and 106 from nonendemic areas in Bangladesh, were recruited. Drinking water, hair, nail, and blood samples were collected from the study subjects for analysis. Total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels were lower in arsenic-endemic subjects than those of nonendemic subjects. Oxidized LDL (Ox-LDL), C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) levels were significantly higher in arsenic-endemic subjects than those in nonendemic subjects. All these circulating molecules showed significant correlations with arsenic exposure (water, hair, and nail arsenic concentrations), and all these relations were significant before and after adjusting for relevant covariates. Among the circulating molecules tested in this study, HDL, Ox-LDL, and CRP showed dose-response relationships with arsenic exposure. Ox-LDL/HDL ratios were increased with the increasing concentrations of arsenic in the water, hair, and nails. Furthermore, non-HDL cholesterol and TC/HDL ratios were significantly correlated with arsenic exposure before and after adjusting for relevant covariates. Thus, all the observed associations may be the major features of arsenic exposure-related atherosclerosis leading to CVD.


Environmental Health | 2010

Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh

Nurshad Ali; Ashraful Hoque; Abedul Haque; Kazi Abdus Salam; Rezaul Karim; Aminur Rahman; Khairul Islam; Zahangir Alam Saud; Abdul Khalek; Anwarul A. Akhand; Mostaque Hossain; Abul Mandal; Hideki Miyataka; Seiichiro Himeno; Khaled Hossain

BackgroundArsenic is a potent pollutant that has caused an environmental catastrophe in certain parts of the world including Bangladesh where millions of people are presently at risk due to drinking water contaminated by arsenic. Chronic arsenic exposure has been scientifically shown as a cause for liver damage, cancers, neurological disorders and several other ailments. The relationship between plasma cholinesterase (PChE) activity and arsenic exposure has not yet been clearly documented. However, decreased PChE activity has been found in patients suffering liver dysfunction, heart attack, cancer metastasis and neurotoxicity. Therefore, in this study, we evaluated the PChE activity in individuals exposed to arsenic via drinking water in Bangladesh.MethodsA total of 141 Bangladeshi residents living in arsenic endemic areas with the mean arsenic exposure of 14.10 ± 3.27 years were selected as study subjects and split into tertile groups based on three water arsenic concentrations: low (< 129 μg/L), medium (130-264 μg/L) and high (> 265 μg/L). Study subjects were further sub-divided into two groups (≤50 μg/L and > 50 μg/L) based on the recommended upper limit of water arsenic concentration (50 μg/L) in Bangladesh. Blood samples were collected from the study subjects by venipuncture and arsenic concentrations in drinking water, hair and nail samples were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PChE activity was assayed by spectrophotometer.ResultsArsenic concentrations in hair and nails were positively correlated with the arsenic levels in drinking water. Significant decreases in PChE activity were observed with increasing concentrations of arsenic in water, hair and nails. The average levels of PChE activity in low, medium and high arsenic exposure groups were also significantly different between each group. Lower levels of PChE activity were also observed in the > 50 μg/L group compared to the ≤50 μg/L group. Moreover, PChE activity was significantly decreased in the skin (+) symptoms group compared to those without (-).ConclusionsWe found a significant inverse relationship between arsenic exposure and PChE activity in a human population in Bangladesh. This research demonstrates a novel exposure-response relationship between arsenic and PChE activity which may explain one of the biological mechanisms through which arsenic exerts its neuro-and hepatotoxicity in humans.


BioMed Research International | 2013

Actinomycetes: A Repertory of Green Catalysts with a Potential Revenue Resource

Divya Prakash; Neelu Nawani; Mansi Prakash; Manish Bodas; Abul Mandal; Madhukar Khetmalas; Balasaheb Kapadnis

Biocatalysis, one of the oldest technologies, is becoming a favorable alternative to chemical processes and a vital part of green technology. It is an important revenue generating industry due to a global market projected at


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2014

Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water

Aminur Rahman; Noor Nahar; Neelu Nawani; Jana Jass; Prithviraj Desale; Balu P. Kapadnis; Khaled Hossain; Ananda Kumar Saha; Sibdas Ghosh; Björn Olsson; Abul Mandal

7 billion in 2013 with a growth of 6.7% for enzymes alone. Some microbes are important sources of enzymes and are preferred over sources of plant and animal origin. As a result, more than 50% of the industrial enzymes are obtained from bacteria. The constant search for novel enzymes with robust characteristics has led to improvisations in the industrial processes, which is the key for profit growth. Actinomycetes constitute a significant component of the microbial population in most soils and can produce extracellular enzymes which can decompose various materials. Their enzymes are more attractive than enzymes from other sources because of their high stability and unusual substrate specificity. Actinomycetes found in extreme habitats produce novel enzymes with huge commercial potential. This review attempts to highlight the global importance of enzymes and extends to signify actinomycetes as promising harbingers of green technology.


Frontiers in Plant Science | 2016

Role of Silicon Counteracting Cadmium Toxicity in Alfalfa (Medicago sativa L.)

Ahmad Humayan Kabir; Mohammad M. Hossain; Most Amena Khatun; Abul Mandal; Sa Haider

The main objective of this study was to identify and isolate arsenic resistant bacteria that can be used for removing arsenic from the contaminated environment. Here we report a soil borne bacterium, B1-CDA that can serve this purpose. B1-CDA was isolated from the soil of a cultivated land in Chuadanga district located in the southwest region of Bangladesh. The morphological, biochemical and 16S rRNA analysis suggested that the isolate belongs to Lysinibacillus sphaericus. The minimum inhibitory concentration (MIC) value of the isolate is 500 mM (As) as arsenate. TOF-SIMS and ICP-MS analysis confirmed intracellular accumulation and removal of arsenics. Arsenic accumulation in cells amounted to 5.0 mg g−1 of the cells dry biomass and thus reduced the arsenic concentration in the contaminated liquid medium by as much as 50%. These results indicate that B1-CDA has the potential for remediation of arsenic from the contaminated water. We believe the benefits of implementing this bacterium to efficiently reduce arsenic exposure will not only help to remove one aspect of human arsenic poisoning but will also benefit livestock and native animal species. Therefore, the outcome of this research will be highly significant for people in the affected area and also for human populations in other countries that have credible health concerns as a consequence of arsenic-contaminated water.


The Journal of Steroid Biochemistry and Molecular Biology | 2010

Vitamin D and prostate cancer: The role of membrane initiated signaling pathways in prostate cancer progression

Sandra Karlsson; Josefin Olausson; Dan Lundh; Peter Sögård; Abul Mandal; Kjell-Ove Holmström; Anette Stahel; Jenny Bengtsson; Dennis Larsson

Cadmium (Cd) is one of the most phytotoxic elements causing an agricultural problem and human health hazards. This work investigates whether and how silicon (Si) ameliorates Cd toxicity in Alfalfa. The addition of Si in Cd-stressed plants caused significant improvement in morpho-physiological features as well as total protein and membrane stability, indicating that Si does have critical roles in Cd detoxification in Alfalfa. Furthermore, Si supplementation in Cd-stressed plants showed a significant decrease in Cd and Fe concentrations in both roots and shoots compared with Cd-stressed plants, revealing that Si-mediated tolerance to Cd stress is associated with Cd inhibition in Alfalfa. Results also showed no significant changes in the expression of two metal chelators [MsPCS1 (phytochelatin synthase) and MsMT2 (metallothionein)] and PC (phytochelatin) accumulation, indicating that there may be no metal sequestration or change in metal sequestration following Si application under Cd stress in Alfalfa. We further performed a targeted study on the effect of Si on Fe uptake mechanisms. We observed the consistent reduction in Fe reductase activity, expression of Fe-related genes [MsIRT1 (Fe transporter), MsNramp1 (metal transporter) and OsFRO1 (ferric chelate reductase] and Fe chelators (citrate and malate) by Si application to Cd stress in roots of Alfalfa. These results support that limiting Fe uptake through the down-regulation of Fe acquisition mechanisms confers Si-mediated alleviation of Cd toxicity in Alfalfa. Finally, an increase of catalase, ascorbate peroxidase, and superoxide dismutase activities along with elevated methionine and proline subjected to Si application might play roles, at least in part, to reduce H2O2 and to provide antioxidant defense against Cd stress in Alfalfa. The study shows evidence of the effect of Si on alleviating Cd toxicity in Alfalfa and can be further extended for phytoremediation of Cd toxicity in plants.


Transgenic Research | 2002

A Human CpG Island Randomly Inserted Into a Plant Genome is Protected From Methylation

Trine J. Meza; Espen Enerly; Bente Børud; Frank Larsen; Abul Mandal; Reidunn B. Aalen; Kjetill S. Jakobsen

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been demonstrated to mediate both genomic and non-genomic responses in prostate cancer (CaP) cells. Here, we give an overview of membrane initiated 1,25(OH)2D3 signaling in prostate cancer cell progression. The presence of PDIA3 was investigated and homologous modeling of the putative PDIA3 receptor complex was conducted. Furthermore, the cellular distribution of nVDR was analyzed. We could show that both nVDR and PDIA3 are expressed in the prostate cancer cell lines investigated. The homologous modeling of PDIA3 showed that the receptor complex exists in a trimer formation, which suggests for allosteric activity. Our findings support previous reports and suggest that 1,25(OH)2D3 is an important therapeutic agent in inhibiting prostate cancer progression. Furthermore, our data show that 1,25(OH)2D3 regulate prostate cell biology via multiple pathways and targeting specific pathways for 1,25(OH)2D3 might provide more effective therapies compared to the vitamin D therapies currently clinically tested.


Physiologia Plantarum | 2009

AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana

Biljana Stangeland; E. Maryann Rosenhave; Per Winge; Anita Berg; Silja S. Amundsen; Mirela Karabeg; Abul Mandal; Atle M. Bones; Paul E. Grini; Reidunn B. Aalen

In vertebrate genomes the dinucleotide CpG is heavily methylated, except in CpG islands, which are normally unmethylated. It is not clear why the CpG islands are such poor substrates for DNA methyltransferase. Plant genomes display methylation, but otherwise the genomes of plants and animals represent two very divergent evolutionary lines. To gain a further understanding of the resistance of CpG islands to methylation, we introduced a human CpG island from the proteasome-like subunit I gene into the genome of the plant Arabidopsis thaliana. Our results show that prevention of methylation is an intrinsic property of CpG islands, recognized even if a human CpG island is transferred to a plant genome. Two different parts of the human CpG island – the promoter region/ first exon and exon2–4 – both displayed resistance against methylation, but the promoter/ exon1 construct seemed to be most resistant. In contrast, certain sites in a plant CpG-rich region used as a control transgene were always methylated. The frequency of silencing of the adjacent nptII (KmR) gene in the human CpG constructs was lower than observed for the plant CpG-rich region. These results have implications for understanding DNA methylation, and for construction of vectors that will reduce transgene silencing.

Collaboration


Dive into the Abul Mandal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sibdas Ghosh

Dominican University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Lundh

University of Skövde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Balasaheb Kapadnis

Savitribai Phule Pune University

View shared research outputs
Researchain Logo
Decentralizing Knowledge