Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Achintya K. Bandyopadhyaya is active.

Publication


Featured researches published by Achintya K. Bandyopadhyaya.


Molecular Cancer Therapeutics | 2005

Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature

Marina V. Backer; Timur I. Gaynutdinov; Vimal Patel; Achintya K. Bandyopadhyaya; B. T. S. Thirumamagal; Werner Tjarks; Rolf F. Barth; Kevin P. Claffey; Joseph M. Backer

Tumor neovasculature is a potential but, until very recently, unexplored target for boron neutron capture therapy (BNCT) of cancer. In the present report, we describe the construction of a vascular endothelial growth factor (VEGF)–containing bioconjugate that potentially could be used to target up-regulated VEGF receptors (VEGFR), which are overexpressed on tumor neovasculature. A fifth-generation polyamidoamine dendrimer containing 128 reactive amino groups was reacted with 105 to 110 decaborate molecules to produce a macromolecule with 1,050 to 1,100 boron atoms per dendrimer. This was conjugated to thiol groups of VEGF at a 4:1 molar ratio using the heterobifunctional reagent sulfo-LC-SPDP. In addition, the boronated dendrimer was tagged with a near-IR Cy5 dye to allow for near-IR fluorescent imaging of the bioconjugate in vitro and in vivo. As would be predicted, the resulting VEGF-BD/Cy5 bioconjugate was not cytotoxic to HEK293 cells engineered to express 2.5 × 106 VEGFR-2 per cell. Furthermore, it showed binding and activation of VEGFR-2 comparable with that of native VEGF. Internalization of VEGF-BD/Cy5 by PAE cells expressing 2.5 × 105 VEGFR-2 per cell was inhibited by excess VEGF, indicating a VEGFR-2-mediated mechanism of uptake. Near-IR fluorescent imaging of 4T1 mouse breast carcinoma revealed selective accumulation of VEGF-BD/Cy5, but not BD/Cy5, particularly at the tumor periphery where angiogenesis was most active. Accumulation of VEGF-BD/Cy5 in 4T1 breast carcinoma was diminished in mice pretreated with a toxin-VEGF fusion protein that selectively killed VEGFR-2-overexpressing endothelial cells. Our data lay the groundwork for future studies using the VEGF-BD/Cy5 bioconjugate as a targeting agent for BNCT of tumor neovasculature.


Clinical Cancer Research | 2007

Molecular Targeting and Treatment of an Epidermal Growth Factor Receptor–Positive Glioma Using Boronated Cetuximab

Gong Wu; Weilian Yang; Rolf F. Barth; Shinji Kawabata; Michele Swindall; Achintya K. Bandyopadhyaya; Werner Tjarks; Behrooz Khorsandi; Thomas E. Blue; Amy K. Ferketich; Ming Yang; Gregory A. Christoforidis; Thomas J. Sferra; Peter J. Binns; Kent J. Riley; Michael J. Ciesielski; Robert A. Fenstermaker

Purpose: The purpose of the present study was to evaluate the anti–epidermal growth factor monoclonal antibody (mAb) cetuximab (IMC-C225) as a delivery agent for boron neutron capture therapy (BNCT) of a human epidermal growth factor receptor (EGFR) gene-transfected rat glioma, designated as F98EGFR. Experimental Design: A heavily boronated polyamidoamine dendrimer was chemically linked to cetuximab by means of the heterobifunctional reagents N-succinimidyl 3-(2-pyridyldithio)-propionate and N-(k-maleimido undecanoic acid)-hydrazide. The bioconjugate, designated as BD-C225, was specifically taken up by F98EGFR glioma cells in vitro compared with receptor-negative F98 wild-type cells (41.8 versus 9.1 μg/g). For in vivo biodistribution studies, F98EGFR cells were implanted stereotactically into the brains of Fischer rats, and 14 days later, BD-C225 was given intracerebrally by either convection enhanced delivery (CED) or direct intratumoral (i.t.) injection. Results: The amount of boron retained by F98EGFR gliomas 24 h following CED or i.t. injection was 77.2 and 50.8 μg/g, respectively, with normal brain and blood boron values <0.05 μg/g. Boron neutron capture therapy was carried out at the Massachusetts Institute of Technology Research Reactor 24 h after CED of BD-C225, either alone or in combination with i.v. boronophenylalanine (BPA). The corresponding mean survival times (MST) were 54.5 and 70.9 days (P = 0.017), respectively, with one long-term survivor (more than 180 days). In contrast, the MSTs of irradiated and untreated controls, respectively, were 30.3 and 26.3 days. In a second study, the combination of BD-C225 and BPA plus sodium borocaptate, given by either i.v. or intracarotid injection, was evaluated and the MSTs were equivalent to that obtained with BD-C225 plus i.v. BPA. Conclusions: The survival data obtained with BD-C225 are comparable with those recently reported by us using boronated mAb L8A4 as the delivery agent. This mAb recognizes the mutant receptor, EGFRvIII. Taken together, these data convincingly show the therapeutic efficacy of molecular targeting of EGFR using a boronated mAb either alone or in combination with BPA and provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors.


Clinical Cancer Research | 2006

Molecular Targeting and Treatment of EGFRvIII-Positive Gliomas Using Boronated Monoclonal Antibody L8A4

Weilian Yang; Rolf F. Barth; Gong Wu; Shinji Kawabata; Thomas J. Sferra; Achintya K. Bandyopadhyaya; Werner Tjarks; Amy K. Ferketich; Melvin L. Moeschberger; Peter J. Binns; Kent J. Riley; Jeffrey A. Coderre; Michael J. Ciesielski; Robert A. Fenstermaker; Carol J. Wikstrand

Purpose: The purpose of the present study was to evaluate a boronated EGFRvIII-specific monoclonal antibody, L8A4, for boron neutron capture therapy (BNCT) of the receptor-positive rat glioma, F98npEGFRvIII. Experimental Design: A heavily boronated polyamido amine (PAMAM) dendrimer (BD) was chemically linked to L8A4 by two heterobifunctional reagents, N-succinimidyl 3-(2-pyridyldithio)propionate and N-(k-maleimidoundecanoic acid)hydrazide. For in vivo studies, F98 wild-type receptor-negative or EGFRvIII human gene-transfected receptor-positive F98npEGFRvIII glioma cells were implanted i.c. into the brains of Fischer rats. Biodistribution studies were initiated 14 days later. Animals received [125I]BD-L8A4 by either convection enhanced delivery (CED) or direct i.t. injection and were euthanized 6, 12, 24, or 48 hours later. Results: At 6 hours, equivalent amounts of the bioconjugate were detected in receptor-positive and receptor-negative tumors, but by 24 hours the amounts retained by receptor-positive gliomas were 60.1% following CED and 43.7% following i.t. injection compared with 14.6% ID/g by receptor-negative tumors. Boron concentrations in normal brain, blood, liver, kidneys, and spleen all were at nondetectable levels (<0.5 μg/g) at the corresponding times. Based on these favorable biodistribution data, BNCT studies were initiated at the Massachusetts Institute of Technology Research Reactor-II. Rats received BD-L8A4 (∼40 μg 10B/∼750 μg protein) by CED either alone or in combination with i.v. boronophenylalanine (BPA; 500 mg/kg). BNCT was carried out 24 hours after administration of the bioconjugate and 2.5 hours after i.v. injection of BPA for those animals that received both agents. Rats that received BD-L8A4 by CED in combination with i.v. BPA had a mean ± SE survival time of 85.5 ± 15.5 days with 20% long-term survivors (>6 months) and those that received BD-L8A4 alone had a mean ± SE survival time of 70.4 ± 11.1 days with 10% long-term survivors compared with 40.1 ± 2.2 days for i.v. BPA and 30.3 ± 1.6 and 26.3 ± 1.1 days for irradiated and untreated controls, respectively. Conclusions: These data convincingly show the therapeutic efficacy of molecular targeting of EGFRvIII using either boronated monoclonal antibody L8A4 alone or in combination with BPA and should provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors.


Clinical Cancer Research | 2008

Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies.

Weilian Yang; Gong Wu; Rolf F. Barth; Michele Swindall; Achintya K. Bandyopadhyaya; Werner Tjarks; Kevin P. Tordoff; Melvin L. Moeschberger; Thomas J. Sferra; Peter J. Binns; Kent J. Riley; Michael J. Ciesielski; Robert A. Fenstermaker; Carol J. Wikstrand

Purpose: The purpose of the present study was to evaluate the anti–epidermal growth factor receptor (EGFR) monoclonal antibody (mAb), cetuximab, (IMC-C225) and the anti-EGFRvIII mAb, L8A4, used in combination as delivery agents for boron neutron capture therapy (BNCT) of a rat glioma composed of a mixture of cells expressing either wild-type (F98EGFR) or mutant receptors(F98npEGFRvIII). Experimental Design: A heavily boronated polyamidoamine dendrimer (BD) was linked by heterobifunctional reagents to produce the boronated mAbs, BD-C225 and BD-L8A4. For in vivo biodistribution and therapy studies, a mixture of tumor cells were implanted intracerebrally into Fischer rats. Biodistribution studies were carried out by administering 125I-labeled bioconjugates via convection-enhanced delivery (CED), and for therapy studies, nonradiolabeled bioconjugates were used for BNCT. This was carried out 14 days after tumor implantation and 24 h after CED at the Massachusetts Institute of Technology nuclear reactor. Results: Following CED of a mixture of 125I-BD-C225 and 125I-BD-L8A4 to rats bearing composite tumors, 61.4% of the injected dose per gram (ID/g) was localized in the tumor compared with 30.8% ID/g for 125I-BD-L8A4 and 34.7% ID/g for 125I-BD-C225 alone. The corresponding calculated tumor boron values were 24.4 μg/g for rats that received both mAbs, and 12.3 and 13.8 μg/g, respectively, for BD-L8A4 or BD-C225 alone. The mean survival time of animals bearing composite tumors, which received both mAbs, was 55 days (P < 0.0001) compared with 36 days for BD-L8A4 and 38 days for BD-C225 alone, which were not significantly different from irradiated controls. Conclusions: Both EGFRvIII and wild-type EGFR tumor cell populations must be targeted using a combination of BD-cetuximab and BD-L8A4. Although in vitro C225 recognized both receptors, in vivo it was incapable of delivering the requisite amount of 10B for BNCT of EGFRvIII-expressing gliomas.


Applied Radiation and Isotopes | 2004

Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMC-C225) as a delivery agent

Rolf F. Barth; Gong Wu; Weilian Yang; Peter J. Binns; Kent J. Riley; Hemant Patel; Jeffrey A. Coderre; Werner Tjarks; Achintya K. Bandyopadhyaya; B. T. S. Thirumamagal; Michael J. Ciesielski; Robert A. Fenstermaker


Applied Radiation and Isotopes | 2004

Boronated epidermal growth factor as a delivery agent for neutron capture therapy of EGF receptor positive gliomas.

Weil Ian Yang; Rolf F. Barth; Gong Wu; Achintya K. Bandyopadhyaya; B. T. S. Thirumamagal; Werner Tjarks; Peter J. Binns; Kent J. Riley; Hemant Patel; Jeffrey A. Coderre; Michael J. Ciesielski; Robert A. Fenstermaker


Anti-cancer Agents in Medicinal Chemistry | 2006

3-Carboranyl Thymidine Analogues (3CTAs) and Other Boronated Nucleosides for Boron Neutron Capture Therapy

Youngjoo Byun; Sureshbabu Narayanasamy; Jayaseharan Johnsamuel; Achintya K. Bandyopadhyaya; Rohit Tiwari; Ashraf S. Al-Madhoun; Rolf F. Barth; Staffan Eriksson; Werner Tjarks


Bioorganic & Medicinal Chemistry | 2006

Hydrophilically enhanced 3-carboranyl thymidine analogues (3CTAs) for boron neutron capture therapy (BNCT) of cancer.

Sureshbabu Narayanasamy; B. T. S. Thirumamagal; Jayaseharan Johnsamuel; Youngjoo Byun; Ashraf S. Al-Madhoun; Elena Usova; Guirec Y. Cosquer; Junhua Yan; Achintya K. Bandyopadhyaya; Rohit Tiwari; Staffan Eriksson; Werner Tjarks


Bioorganic & Medicinal Chemistry | 2005

Comparative molecular field analysis and comparative molecular similarity indices analysis of human thymidine kinase 1 substrates.

Achintya K. Bandyopadhyaya; Jayaseharan Johnsamuel; Ashraf S. Al-Madhoun; Staffan Eriksson; Werner Tjarks


Bioorganic & Medicinal Chemistry | 2006

Comparative molecular field analysis and comparative molecular similarity indices analysis of boron-containing human thymidine kinase 1 substrates.

Achintya K. Bandyopadhyaya; Rohit Tiwari; Werner Tjarks

Collaboration


Dive into the Achintya K. Bandyopadhyaya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gong Wu

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Kent J. Riley

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael J. Ciesielski

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Peter J. Binns

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge