Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ad Geurts van Kessel is active.

Publication


Featured researches published by Ad Geurts van Kessel.


Nature Genetics | 2009

Acquired mutations in TET2 are common in myelodysplastic syndromes

S. Langemeijer; Roland P. Kuiper; Marieke Berends; Ruth Knops; Mariam G Aslanyan; Marion Massop; Ellen Stevens-Linders; Patricia van Hoogen; Ad Geurts van Kessel; Reinier Raymakers; Eveline J. Kamping; Gregor Verhoef; Estelle Verburgh; Anne Hagemeijer; Peter Vandenberghe; Theo de Witte; Bert A. van der Reijden; Joop H. Jansen

Myelodysplastic syndromes (MDS) represent a heterogeneous group of neoplastic hematopoietic disorders. Several recurrent chromosomal aberrations have been associated with MDS, but the genes affected have remained largely unknown. To identify relevant genetic lesions involved in the pathogenesis of MDS, we conducted SNP array–based genomic profiling and genomic sequencing in 102 individuals with MDS and identified acquired deletions and missense and nonsense mutations in the TET2 gene in 26% of these individuals. Using allele-specific assays, we detected TET2 mutations in most of the bone marrow cells (median 96%). In addition, the mutations were encountered in various lineages of differentiation including CD34+ progenitor cells, suggesting that TET2 mutations occur early during disease evolution. In healthy tissues, TET2 expression was shown to be elevated in hematopoietic cells with highest expression in granulocytes, in line with a function in myelopoiesis. We conclude that TET2 is the most frequently mutated gene in MDS known so far.


American Journal of Human Genetics | 2005

Diagnostic Genome Profiling in Mental Retardation

Bert B.A. de Vries; Rolph Pfundt; Martijn Leisink; David A. Koolen; Lisenka E.L.M. Vissers; Irene M. Janssen; Simon V. van Reijmersdal; Willy M. Nillesen; Erik Huys; Nicole de Leeuw; Dominique Smeets; Erik A. Sistermans; Ton Feuth; Conny M.A. van Ravenswaaij-Arts; Ad Geurts van Kessel; E.F.P.M. Schoenmakers; Han G. Brunner; Joris A. Veltman

Mental retardation (MR) occurs in 2%-3% of the general population. Conventional karyotyping has a resolution of 5-10 million bases and detects chromosomal alterations in approximately 5% of individuals with unexplained MR. The frequency of smaller submicroscopic chromosomal alterations in these patients is unknown. Novel molecular karyotyping methods, such as array-based comparative genomic hybridization (array CGH), can detect submicroscopic chromosome alterations at a resolution of 100 kb. In this study, 100 patients with unexplained MR were analyzed using array CGH for DNA copy-number changes by use of a novel tiling-resolution genomewide microarray containing 32,447 bacterial artificial clones. Alterations were validated by fluorescence in situ hybridization and/or multiplex ligation-dependent probe amplification, and parents were tested to determine de novo occurrence. Reproducible DNA copy-number changes were present in 97% of patients. The majority of these alterations were inherited from phenotypically normal parents, which reflects normal large-scale copy-number variation. In 10% of the patients, de novo alterations considered to be clinically relevant were found: seven deletions and three duplications. These alterations varied in size from 540 kb to 12 Mb and were scattered throughout the genome. Our results indicate that the diagnostic yield of this approach in the general population of patients with MR is at least twice as high as that of standard GTG-banded karyotyping.


Nature Genetics | 2009

Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3' exons of TACSTD1.

Marjolijn J. L. Ligtenberg; Roland P. Kuiper; Tsun Leung Chan; Monique Goossens; Konnie M. Hebeda; Marsha Voorendt; Tracy Y H Lee; Danielle Bodmer; Eveline Hoenselaar; Sandra J B Hendriks-Cornelissen; Wai Yin Tsui; Chi Kwan Kong; Han G. Brunner; Ad Geurts van Kessel; Siu Tsan Yuen; J. Han van Krieken; Suet Yi Leung; Nicoline Hoogerbrugge

Lynch syndrome patients are susceptible to colorectal and endometrial cancers owing to inactivating germline mutations in mismatch repair genes, including MSH2 (ref. 1). Here we describe patients from Dutch and Chinese families with MSH2-deficient tumors carrying heterozygous germline deletions of the last exons of TACSTD1, a gene directly upstream of MSH2 encoding Ep-CAM. Due to these deletions, transcription of TACSTD1 extends into MSH2. The MSH2 promoter in cis with the deletion is methylated in Ep-CAM positive but not in Ep-CAM negative normal tissues, thus revealing a correlation between activity of the mutated TACSTD1 allele and epigenetic inactivation of the corresponding MSH2 allele. Gene silencing by transcriptional read-through of a neighboring gene in either sense, as demonstrated here, or antisense direction, could represent a general mutational mechanism. Depending on the expression pattern of the neighboring gene that lacks its normal polyadenylation signal, this may cause either generalized or mosaic patterns of epigenetic inactivation.


American Journal of Human Genetics | 2003

Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormalities

Lisenka E.L.M. Vissers; Bert B.A. de Vries; Kazutoyo Osoegawa; Irene M. Janssen; Ton Feuth; Chik On Choy; Huub Straatman; Walter van der Vliet; Erik Huys; Anke van Rijk; Dominique Smeets; Conny M. A. van Ravenswaaij-Arts; Nine V.A.M. Knoers; Ineke van der Burgt; Pieter J. de Jong; Han G. Brunner; Ad Geurts van Kessel; Eric F.P.M. Schoenmakers; Joris A. Veltman

Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using approximately 3,500 flourescent in situ hybridization-verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome.


Nature Genetics | 2006

A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism

David A. Koolen; Lisenka E.L.M. Vissers; Rolph Pfundt; Nicole de Leeuw; Samantha J. L. Knight; Regina Regan; R. Frank Kooy; Edwin Reyniers; Corrado Romano; Marco Fichera; Albert Schinzel; Alessandra Baumer; Britt Marie Anderlid; Jacqueline Schoumans; N.V.A.M. Knoers; Ad Geurts van Kessel; Erik A. Sistermans; Joris A. Veltman; Han G. Brunner; Bert B.A. de Vries

Submicroscopic genomic copy number changes have been identified only recently as an important cause of mental retardation. We describe the detection of three interstitial, overlapping 17q21.31 microdeletions in a cohort of 1,200 mentally retarded individuals associated with a clearly recognizable clinical phenotype of mental retardation, hypotonia and a characteristic face. The deletions encompass the MAPT and CRHR1 genes and are associated with a common inversion polymorphism.


American Journal of Human Genetics | 2002

High-Throughput Analysis of Subtelomeric Chromosome Rearrangements by Use of Array-Based Comparative Genomic Hybridization

Joris A. Veltman; Eric F.P.M. Schoenmakers; Bert H.J. Eussen; Irene M. Janssen; Gerard Merkx; Brigitte van Cleef; Conny M. A. van Ravenswaaij; Han G. Brunner; Dominique Smeets; Ad Geurts van Kessel

Telomeric chromosome rearrangements may cause mental retardation, congenital anomalies, and miscarriages. Automated detection of subtle deletions or duplications involving telomeres is essential for high-throughput diagnosis, but impossible when conventional cytogenetic methods are used. Array-based comparative genomic hybridization (CGH) allows high-resolution screening of copy number abnormalities by hybridizing differentially labeled test and reference genomes to arrays of robotically spotted clones. To assess the applicability of this technique in the diagnosis of (sub)telomeric imbalances, we here describe a blinded study, in which DNA from 20 patients with known cytogenetic abnormalities involving one or more telomeres was hybridized to an array containing a validated set of human-chromosome-specific (sub)telomere probes. Single-copy-number gains and losses were accurately detected on these arrays, and an excellent concordance between the original cytogenetic diagnosis and the array-based CGH diagnosis was obtained by use of a single hybridization. In addition to the previously identified cytogenetic changes, array-based CGH revealed additional telomere rearrangements in 3 of the 20 patients studied. The robustness and simplicity of this array-based telomere copy-number screening make it highly suited for introduction into the clinic as a rapid and sensitive automated diagnostic procedure.


American Journal of Human Genetics | 2008

Recurrent CNVs disrupt three candidate genes in schizophrenia patients

Terry Vrijenhoek; Jacobine E. Buizer-Voskamp; Inge van der Stelt; Eric Strengman; Chiara Sabatti; Ad Geurts van Kessel; Han G. Brunner; Roel A. Ophoff; Joris A. Veltman

Schizophrenia is a severe psychiatric disease with complex etiology, affecting approximately 1% of the general population. Most genetics studies so far have focused on disease association with common genetic variation, such as single-nucleotide polymorphisms (SNPs), but it has recently become apparent that large-scale genomic copy-number variants (CNVs) are involved in disease development as well. To assess the role of rare CNVs in schizophrenia, we screened 54 patients with deficit schizophrenia using Affymetrixs GeneChip 250K SNP arrays. We identified 90 CNVs in total, 77 of which have been reported previously in unaffected control cohorts. Among the genes disrupted by the remaining rare CNVs are MYT1L, CTNND2, NRXN1, and ASTN2, genes that play an important role in neuronal functioning but--except for NRXN1--have not been associated with schizophrenia before. We studied the occurrence of CNVs at these four loci in an additional cohort of 752 patients and 706 normal controls from The Netherlands. We identified eight additional CNVs, of which the four that affect coding sequences were found only in the patient cohort. Our study supports a role for rare CNVs in schizophrenia susceptibility and identifies at least three candidate genes for this complex disorder.


Genes, Chromosomes and Cancer | 2001

Molecular mechanisms underlying human synovial sarcoma development.

Nuno R. dos Santos; Diederik R.H. de Bruijn; Ad Geurts van Kessel

Synovial sarcomas are rather common among soft-tissue tumors, occurring at any age but affecting mainly young adults. The vast majority of synovial sarcomas carries a t(X;18)(p11.2;q11.2) chromosomal translocation, in about one-third of the cases as the sole cytogenetic anomaly. Several studies have indicated that the t(X;18) translocation arises exclusively in synovial sarcomas, therefore being an excellent tool to diagnose this malignancy. The breakpoint-associated genes were recently isolated: SYT, from chromosome 18, and SSX1 and SSX2, both from the X chromosome. This discovery enabled the detection of SYT-SSX fusion transcripts by specific reverse transcriptase–polymerase chain reactions. This molecular genetics methodology has now been applied to numerous tumor samples and has led to the finding that, in contrast to tumors carrying SYT-SSX2 fusions, SYT-SSX1–positive tumors more often exhibit a biphasic histology, show a higher proliferation rate, and are associated with a poorer clinical outcome. It has also been shown that the SYT and SSX proteins are localized in the nucleus, where they appear to play a role in transcriptional regulation, SYT as an activator of transcription and the SSX proteins as transcriptional repressors. It was also found that SYT interacts and colocalizes in the nucleus with the BRM protein, a transcriptional coactivator, and that the SSX proteins colocalize in the nucleus with polycomb group proteins, which are transcriptional corepressors. Together, these studies have provided mechanistic clues about how the SYT-SSX fusion proteins may trigger synovial sarcoma development.


Human Mutation | 2009

Genomic microarrays in mental retardation: a practical workflow for diagnostic applications.

David A. Koolen; Rolph Pfundt; Nicole de Leeuw; Jayne Y. Hehir-Kwa; Willy M. Nillesen; Ineke Neefs; Ine Scheltinga; Erik A. Sistermans; Dominique Smeets; Han G. Brunner; Ad Geurts van Kessel; Joris A. Veltman; Bert B.A. de Vries

Microarray‐based copy number analysis has found its way into routine clinical practice, predominantly for the diagnosis of patients with unexplained mental retardation. However, the clinical interpretation of submicroscopic copy number variants (CNVs) is complicated by the fact that many CNVs are also present in the general population. Here we introduce and discuss a workflow that can be used in routine diagnostics to assess the clinical significance of the CNVs identified. We applied this scheme to our cohort of 386 individuals with unexplained mental retardation tested using a genome‐wide tiling‐resolution DNA microarray and to 978 additional patients with mental retardation reported in 15 genome‐wide microarray studies extracted from the literature. In our cohort of 386 patients we identified 25 clinically significant copy number losses (median size 2.6 Mb), nine copy number gains (median size 2.0 Mb), and one mosaic numerical chromosome aberration. Accordingly, the overall diagnostic yield of clinically significant CNVs was 9.1%. Taken together, our cohort and the patients described in the literature include a total of 1,364 analyses of DNA copy number in which a total of 11.2% (71.9% losses, 19.6% gains, 8.5% complex) could be identified, reflecting the overall diagnostic yield of clinically significant CNVs in individuals with unexplained mental retardation. Hum Mutat 0, 1–10, 2008.


Human Molecular Genetics | 2009

Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture

Lisenka E.L.M. Vissers; Samarth Bhatt; Irene M. Janssen; Zhilian Xia; Seema R. Lalani; Rolph Pfundt; Katarzyna Derwińska; Bert B.A. de Vries; Christian Gilissen; Alexander Hoischen; Monika Nesteruk; Barbara Wisniowiecka-Kowalnik; Marta Smyk; Han G. Brunner; Sau Wai Cheung; Ad Geurts van Kessel; Joris A. Veltman; Pawel Stankiewicz

Genomic copy number variation (CNV) plays a major role in various human diseases as well as in normal phenotypic variability. For some recurrent disease-causing CNVs that convey genomic disorders, the causative mechanism is meiotic, non-allelic, homologous recombination between breakpoint regions exhibiting extensive sequence homology (e.g. low-copy repeats). For the majority of recently identified rare pathogenic CNVs, however, the mechanism is unknown. Recently, a model for CNV formation implicated mitotic replication-based mechanisms, such as (alternative) non-homologous end joining and fork stalling and template switching, in the etiology of human pathogenic CNVs. The extent to which such mitotic mechanisms contribute to rare pathogenic CNVs remains to be determined. In addition, it is unexplored whether genomic architectural features such as repetitive elements or sequence motifs associated with DNA breakage stimulate the formation of rare pathogenic CNVs. To this end, we have sequenced breakpoint junctions of 30 rare pathogenic microdeletions and eight tandem duplications, representing the largest series of such CNVs examined to date in this much detail. Our results demonstrate the presence of (micro)homology ranging from 2 to over 75 bp, in 79% of the breakpoint junctions. This indicates that microhomology-mediated repair mechanisms, including the recently reported fork stalling and template switching and/or microhomology-mediated break-induced replication, prevail in rare pathogenic CNVs. In addition, we found that the vast majority of all breakpoints (81%) were associated with at least one of the genomic architectural features evaluated. Moreover, 75% of tandem duplication breakpoints were associated with the presence of one of two novel sequence motifs. These data suggest that rare pathogenic microdeletions and tandem duplications do not occur at random genome sequences, but are stimulated and potentially catalyzed by various genomic architectural features.

Collaboration


Dive into the Ad Geurts van Kessel's collaboration.

Top Co-Authors

Avatar

Roland P. Kuiper

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joris A. Veltman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominique Smeets

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eveline J. Kamping

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge