Ad M. Knaapen
Schering-Plough
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ad M. Knaapen.
Mutagenesis | 2010
Nejla Güngör; Ad M. Knaapen; Armelle Munnia; Marco Peluso; Guido R.M.M. Haenen; Roland K. Chiu; Roger W. L. Godschalk; Frederik J. Van Schooten
Chronic inflammation has been recognized as a contributing factor in the pathogenesis of lung cancer. In this process, reactive oxygen species released by neutrophils may play an important role. The aim of the present study was to investigate the capacity of the major neutrophilic oxidant hypochlorous acid (HOCl), which is formed by myeloperoxidase (MPO), to induce DNA damage and mutagenicity in lung cells. HOCl was mutagenic in lung epithelial A549 cells in vitro, showing at physiological concentrations a significant induction of mutations in the HPRT gene. We studied three major types of DNA lesions that could be relevant for this HOCl-induced mutagenicity. Single strand DNA breakage and 8-oxo-7,8-dihydro-2-deoxyguanosine were not found to be increased following HOCl treatment. On the other hand, HOCl caused a significant increase in the formation of 3-(2-deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10(3H)-one (M(1)dG), which can be formed by either malondialdehyde (MDA) or base propenals. We observed an increased MDA formation upon exposure of A549 cells to HOCl, but a role of base propenals cannot be excluded. In line with this, we observed 4-fold increased M(1)dG adduct levels in mice that were intratracheally instilled with lipopolysaccharide to induce a pulmonary inflammation with neutrophil influx. Depletion of circulating neutrophils significantly reduced pulmonary MPO activity as well as M(1)dG adducts levels, thereby providing a causal link between neutrophils/HOCl and pulmonary genotoxicity in vivo. Taken together, these data indicate that MPO catalysed formation of HOCl during lung inflammation should be considered as a significant source of neutrophil-induced genotoxicity.
European Respiratory Journal | 2009
Marieke Quaak; C.P. van Schayck; Ad M. Knaapen; F.J. van Schooten
Tobacco smoking continues to be the largest preventable cause of premature morbidity and mortality throughout the world, including chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease. Although most smokers are highly motivated to quit and many smoking cessation therapies are available, cessation rates remain very low. Recent research strongly suggests that variation in genetic background is an important determinant of smoking behaviour and addiction. Since these genetic variants might also influence the response to smoking cessation pharmacotherapies, it is likely that assessment of genetic background could be a promising tool to guide selection of the most effective cessation treatment for an individual smoker. Recently, it has been shown that genetic variants in the dopaminergic system, opioid receptors, the bupropion-metabolising enzyme CYP2B6 and the nicotine-metabolising enzyme CYP2A6 may play an important role in predicting smoking cessation responses to nicotine replacement therapy and bupropion treatment. Despite the progress that has been made, several challenges will still have to be overcome before genetically tailored smoking cessation therapy can be implemented in standard clinical practice.
Respiratory Research | 2010
Nejla Güngör; Jeroen L. A. Pennings; Ad M. Knaapen; Roland K. Chiu; Marco Peluso; Roger W. L. Godschalk; Frederik J. Van Schooten
BackgroundLung cancer often develops in association with chronic pulmonary inflammatory diseases with an influx of neutrophils. More detailed information on inflammatory pathways and the role of neutrophils herein is a prerequisite for understanding the mechanism of inflammation associated cancer.MethodsIn the present study, we used microarrays in order to obtain a global view of the transcriptional responses of the lung to LPS in mice, which mimics an acute lung inflammation. To investigate the influence of neutrophils in this process, we depleted mice from circulating neutrophils by treatment with anti-PMN antibodies prior to LPS exposure.ResultsA total of 514 genes was greater than 1.5-fold differentially expressed in the LPS induced lung inflammation model. 394 of the 514 were up regulated genes mostly involved in cell cycle and immune/inflammation related processes, such as cytokine/chemokine activity and signalling. Down regulated genes represented nonimmune processes, such as development, metabolism and transport. Notably, the number of genes and pathways that were differentially expressed, was reduced when animals were depleted from circulating neutrophils, confirming the central role of neutrophils in the inflammatory response. Furthermore, there was a significant correlation between the differentially expressed gene list and the promutagenic DNA lesion M1dG, suggesting that it is the extent of the immune response which drives genetic instability in the inflamed lung. Several genes that were specifically regulated by the presence of activated neutrophils could be identified and these were mostly involved in interferon signalling, oxidative stress response and cell cycle progression. The latter possibly refers to a higher rate of cell turnover in the inflamed lung with neutrophils, suggesting that the neutrophil influx is associated with a higher risk for the accumulation and fixation of mutations.ConclusionGene expression profiling identified specific genes and pathways that are related to neutrophilic inflammation and could be associated to cancer development and indicate an active role of neutrophils in mediating the LPS induced inflammatory response in the mouse lung.
Mutagenesis | 2010
Nejla Güngör; Astrid Haegens; Ad M. Knaapen; Roger Godschalk; Roland K. Chiu; Emiel F.M. Wouters; Frederik J. Van Schooten
Chronic pulmonary inflammation is associated with increased lung cancer risk, but the underlying process remains unknown. Recently, we showed that activated neutrophils inhibit nucleotide excision repair (NER) in pulmonary epithelial cells in vitro via the release of myeloperoxidase (MPO). To evaluate the effect of neutrophils on NER in vivo, mice were intratracheally instilled with lipopolysaccharide (LPS) (20 microg), causing acute lung inflammation and associated neutrophil influx into the airways. Three days post-exposure, phenotypical NER capacity was assessed in lung tissue homogenate. LPS exposure inhibited pulmonary NER by approximately 50%. This finding was corroborated by down-regulation of the NER-associated genes Xpa and Xpf. To further elicit the role of neutrophils and MPO in this process, we utilized MPO-deficient mice as well as mice in which circulating neutrophils were depleted by antibody treatment. LPS-induced inhibition of pulmonary NER was not affected by either Mpo(-/-) or by depletion of circulating neutrophils. This contrasts with our previous in vitro observations, suggesting that inhibition of pulmonary NER following acute dosing with LPS is not fully mediated by neutrophils and/or MPO. In conclusion, these data show that LPS-induced pulmonary inflammation is associated with a reduction of NER function in the mouse lung.
Particle and Fibre Toxicology | 2010
Damien van Berlo; Ad M. Knaapen; Frederik-Jan van Schooten; Roel P. F. Schins; Catrin Albrecht
In the initiation and progression of pulmonary inflammation, macrophages have classically been considered as a crucial cell type. However, evidence for the role of epithelial type II cells in pulmonary inflammation has been accumulating. In the current study, a combined in vivo and in vitro approach has been employed to investigate the mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. In vivo, enhanced expression of the inflammation- and oxidative stress-related genes HO-1 and iNOS was found on the mRNA level in rat lungs after instillation with DQ12 respirable quartz. Activation of the classical NF-κB pathway in macrophages and type II pneumocytes was indicated by enhanced immunostaining of phospho-IκBα in these specific lung cell types. In vitro, the direct, particle-mediated effect on proinflammatory signalling in a rat lung epithelial (RLE) cell line was compared to the indirect, macrophage product-mediated effect. Treatment with quartz particles induced HO-1 and COX-2 mRNA expression in RLE cells in an NF-κB independent manner. Supernatant from quartz-treated macrophages rapidly activated the NF-κB signalling pathway in RLE cells and markedly induced iNOS mRNA expression up to 2000-fold compared to non-treated control cells. Neutralisation of TNFα and IL-1β in macrophage supernatant did not reduce its ability to elicit NF-κB activation of RLE cells. In addition the effect was not modified by depletion or supplementation of intracellular glutathione.The results from the current work suggest that although both oxidative stress and NF-κB are likely involved in the inflammatory effects of toxic respirable particles, these phenomena can operate independently on the cellular level. This might have consequences for in vitro particle hazard testing, since by focusing on NF-κB signalling one might neglect alternative inflammatory pathways.
Journal of Physics: Conference Series | 2009
Catrin Albrecht; Ad M. Knaapen; G. Cakmak Demircigil; Erdem Coskun; F.J. van Schooten; Paul J. A. Borm; Roel P. F. Schins
Exposure to quartz dusts has been associated with lung cancer and fibrosis. Although the responsible mechanisms are not completely understood, progressive inflammation with associated induction of persistent oxidative stress has been discussed as a key event for these diseases. Previously we have evaluated the kinetics of pulmonary inflammation in the rat model following a single intratracheal instillation of 2mg DQ12 quartz, either in its native form or upon its surface modification with polyvinylpyridine-N-oxide or aluminium lactate. This model has been applied now to evaluate the role of inflammation in the kinetics of induction of DNA damage and response at 3, 7, 28, and 90 days after treatment. Bronchoalveolar lavage (BAL) cell counts and differentials as well as BAL fluid myeloperoxidase activity were used as markers of inflammation. Whole lung homogenate was investigated to determine the induction of the oxidative and pre-mutagenic DNA lesion 8-hydroxy-2-deoxy-guanosine (8-OHdG) by HPLC/ECD, while mRNA and protein expression of oxidative stress and DNA damage response genes including hemeoxygenase-1 (HO-1) and apurinic/apyrimidinic endonuclease (APE/Ref-1) were evaluated using Western blotting and real time PCR. Isolated lung epithelial cells from the treated rats were used for DNA strand breakage analysis using the alkaline comet assay as well as for micronucleus scoring in May-Gruenwald-Giemsa stained cytospin preparations. In the rats that were treated with quartz, no increased 8-OHdG levels were observed, despite the presence of a marked and persistent inflammation. However, DNA strand breakage in the lung epithelial cells of the quartz treated rats was significantly enhanced at 3 days, but not at 28 days. Moreover, significantly enhanced micronucleus frequencies were observed for all four time points investigated. In the animals that were treated with the PVNO modified quartz, micronuclei scores did not differ from controls, while in those treated with the aluminium coated quartz intermediate effects were found. These findings were in line with the kinetics of inflammation and epithelial proliferation in the rat lungs for the different treatments. Notably, a highly significant correlation was observed between neutrophil numbers and micronucleus frequencies, indicative for a role of inflammation in eliciting genomic instability in target cells of quartz-induced carcinogenesis. Our ongoing investigations focus on the evaluation of the causality between both in relation to quartz exposure.
Journal of Physics: Conference Series | 2009
D van Berlo; Catrin Albrecht; Ad M. Knaapen; F.J. van Schooten; Rpf Schins
The instigation and persistence of an inflammatory response is widely considered to be critically important in quartz-induced lung cancer and fibrosis. Macrophages have been long recognised as a crucial player in pulmonary inflammation, but evidence for the role of type II epithelial cells is accumulating. Investigations were performed in the rat lung type II cell line RLE and the rat alveolar macrophage cell line NR8383 using Western blotting, NF-κB immunohistochemistry and qRT-PCR of the pro-inflammatory genes iNOS and COX-2, as well as the cellular stress gene HO-1. The direct effect of quartz on pro-inflammatory signalling cascades and gene expression in RLE cells was compared to the effect of conditioned media derived from quartz-treated NR8383 cells. Conditioned media activated the NF-κB signalling pathway and induced a far stronger upregulation of iNOS mRNA than quartz itself. Quartz elicited a stronger, progressive induction of COX-2 and HO-1 mRNA. Our results suggest a differentially mediated inflammatory response, in which reactive particles themselves induce oxidative stress and activation of COX-2, while mediators released from particle-activated macrophages trigger NF-κB activation and iNOS expression in type II cells.
Annals of Occupational Hygiene | 2002
Catrin Albrecht; Andrea Becker; Roel P. F. Schins; Doris Höhr; Klaus Unfried; Ad M. Knaapen; Paul J. A. Borm
Pneumologie | 2008
Catrin Albrecht; Ad M. Knaapen; Gonca D. Cakmak; F. van Schooten; Paul J. A. Borm; Rpf Schins
conference; 2007-01-01; 2007-01-01 | 2007
Leo J. Schouten; S.G.J. van Breda; J.G.F. Hogervorst; Ad M. Knaapen; J.H.M. van Delft; R.A. Goldbohm; F.J. van Schooten; P.A. van den Brandt