Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ada Yeste is active.

Publication


Featured researches published by Ada Yeste.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis

Ada Yeste; Meghan Nadeau; Evan J Burns; Howard L. Weiner; Francisco J. Quintana

The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3+ Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)35–55 to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG35–55 expanded the FoxP3+ Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders.


Nature Immunology | 2013

IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39

Ivan D. Mascanfroni; Ada Yeste; Silvio M. Vieira; Evan J Burns; Bonny Patel; Ido Sloma; Yan Wu; Lior Mayo; Rotem Ben-Hamo; Sol Efroni; Vijay K. Kuchroo; Simon C. Robson; Francisco J. Quintana

Dendritic cells (DCs) control the balance between effector T cells and regulatory T cells in vivo. Hence, the study of DCs might identify mechanisms of disease pathogenesis and guide new therapeutic approaches for disorders mediated by the immune system. We found that interleukin 27 (IL-27) signaling in mouse DCs limited the generation of effector cells of the TH1 and TH17 subsets of helper T cells and the development of experimental autoimmune encephalomyelitis (EAE). The effects of IL-27 were mediated at least in part through induction of the immunoregulatory molecule CD39 in DCs. IL-27-induced CD39 decreased the extracellular concentration of ATP and downregulated nucleotide-dependent activation of the NLRP3 inflammasome. Finally, therapeutic vaccination with IL-27-conditioned DCs suppressed established relapsing-remitting EAE. Thus, IL-27 signaling in DCs limited pathogenic T cell responses and the development of autoimmunity.


Nature Immunology | 2012

Aiolos promotes TH17 differentiation by directly silencing Il2 expression.

Francisco J. Quintana; Hulin Jin; Evan J Burns; Meghan Nadeau; Ada Yeste; Deepak Kumar; Manu Rangachari; Chen Zhu; Sheng Xiao; John Seavitt; Katia Georgopoulos; Vijay K. Kuchroo

CD4+ interleukin 17 (IL-17)-producing helper T cells (TH17 cells) are instrumental in the immune response to pathogens. However, an overactive TH17 response results in tissue inflammation and autoimmunity, and therefore it is important to identify the molecular mechanisms that control the development of TH17 cells. IL-2 suppresses such development, but how IL-2 production is actively suppressed during TH7 differentiation is not understood. Here we report that under TH17-polarizing conditions, the transcription factors STAT3 and AhR upregulated the expression of Aiolos, a member of the Ikaros family of transcription factors. Using Aiolos-deficient mice, we demonstrated that Aiolos silenced the Il2 locus, promoting TH17 differentiation in vitro and in vivo. Thus, we have identified a module in the transcriptional program of TH17 cells that actively limits IL-2 production and promotes their differentiation.


Nature Medicine | 2015

Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α

Ivan D. Mascanfroni; Maisa C. Takenaka; Ada Yeste; Bonny Patel; Yan Wu; Jessica E. Kenison; Shafiuddin Siddiqui; Alexandre S. Basso; Leo E. Otterbein; Drew M. Pardoll; Fan Pan; Avner Priel; Clary B. Clish; Simon C. Robson; Francisco J. Quintana

Our understanding of the pathways that regulate lymphocyte metabolism, as well as the effects of metabolism and its products on the immune response, is still limited. We report that a metabolic program controlled by the transcription factors hypoxia inducible factor-1α (HIF1-α) and aryl hydrocarbon receptor (AHR) supports the differentiation of type 1 regulatory T cell (Tr1) cells. HIF1-α controls the early metabolic reprograming of Tr1 cells. At later time points, AHR promotes HIF1-α degradation and takes control of Tr1 cell metabolism. Extracellular ATP (eATP) and hypoxia, linked to inflammation, trigger AHR inactivation by HIF1-α and inhibit Tr1 cell differentiation. Conversely, CD39 promotes Tr1 cell differentiation by depleting eATP. CD39 also contributes to Tr1 suppressive activity by generating adenosine in cooperation with CD73 expressed by responder T cells and antigen-presenting cells. These results suggest that HIF1-α and AHR integrate immunological, metabolic and environmental signals to regulate the immune response.


Nature Medicine | 2014

Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation

Lior Mayo; Sunia A. Trauger; Manon Blain; Meghan Nadeau; Bonny Patel; Jorge Ivan Alvarez; Ivan D. Mascanfroni; Ada Yeste; Pia Kivisäkk; Keith Kallas; Benjamin Ellezam; Rohit Bakshi; Alexandre Prat; Jack P. Antel; Howard L. Weiner; Francisco J. Quintana

Astrocytes have complex roles in health and disease, thus it is important to study the pathways that regulate their function. Here we report that lactosylceramide (LacCer) synthesized by β-1,4-galactosyltransferase 6 (B4GALT6) is upregulated in the central nervous system (CNS) of mice during chronic experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). LacCer acts in an autocrine manner to control astrocyte transcriptional programs that promote neurodegeneration. In addition, LacCer in astrocytes controls the recruitment and activation of microglia and CNS-infiltrating monocytes in a non–cell autonomous manner by regulating production of the chemokine CCL2 and granulocyte-macrophage colony–stimulating factor (GM-CSF), respectively. We also detected high B4GALT6 gene expression and LacCer concentrations in CNS MS lesions. Inhibition of LacCer synthesis in mice suppressed local CNS innate immunity and neurodegeneration in EAE and interfered with the activation of human astrocytes in vitro. Thus, B4GALT6 regulates astrocyte activation and is a potential therapeutic target for MS and other neuroinflammatory disorders.


Cell | 2015

Melatonin Contributes to the Seasonality of Multiple Sclerosis Relapses

Mauricio Farez; Ivan D. Mascanfroni; Santiago P. Méndez-Huergo; Ada Yeste; Gopal Murugaiyan; Lucien P. Garo; María E. Balbuena Aguirre; Bonny Patel; María C. Ysrraelit; Chen Zhu; Vijay K. Kuchroo; Gabriel A. Rabinovich; Francisco J. Quintana; Jorge Correale

Seasonal changes in disease activity have been observed in multiple sclerosis, an autoimmune disorder that affects the CNS. These epidemiological observations suggest that environmental factors influence the disease course. Here, we report that melatonin levels, whose production is modulated by seasonal variations in night length, negatively correlate with multiple sclerosis activity in humans. Treatment with melatonin ameliorates disease in an experimental model of multiple sclerosis and directly interferes with the differentiation of human and mouse T cells. Melatonin induces the expression of the repressor transcription factor Nfil3, blocking the differentiation of pathogenic Th17 cells and boosts the generation of protective Tr1 cells via Erk1/2 and the transactivation of the IL-10 promoter by ROR-α. These results suggest that melatonin is another example of how environmental-driven cues can impact T cell differentiation and have implications for autoimmune disorders such as multiple sclerosis.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice

Sheng Xiao; Craig Brooks; Chen Zhu; Chuan Wu; Johanna M. Sweere; Sonia Petecka; Ada Yeste; Francisco J. Quintana; Takaharu Ichimura; Raymond A. Sobel; Joseph V. Bonventre; Vijay K. Kuchroo

Tim-1, a type I transmembrane glycoprotein, consists of an IgV domain and a mucin domain. The IgV domain is essential for binding Tim-1 to its ligands, but little is known about the role of the mucin domain, even though genetic association of TIM-1 with atopy/asthma has been linked to the length of mucin domain. We generated a Tim-1–mutant mouse (Tim-1Δmucin) in which the mucin domain was deleted genetically. The mutant mice showed a profound defect in IL-10 production from regulatory B cells (Bregs). Associated with the loss of IL-10 production in B cells, older Tim-1Δmucin mice developed spontaneous autoimmunity associated with hyperactive T cells, with increased production of IFN-γ and elevated serum levels of Ig and autoantibodies. However, Tim-1Δmucin mice did not develop frank systemic autoimmune disease unless they were crossed onto the Fas-mutant lpr mice on a C57BL/6 background. Tim-1Δmucinlpr mice developed accelerated and fulminant systemic autoimmunity with accumulation of abnormal double-negative T cells and autoantibodies to a number of lupus-associated autoantigens. Thus, Tim-1 plays a critical role in maintaining suppressive Breg function, and our data also demonstrate an unexpected role of the Tim-1 mucin domain in regulating Breg function and maintaining self-tolerance.


Cell | 2016

Digestion of Chromatin in Apoptotic Cell Microparticles Prevents Autoimmunity

Vanja Sisirak; Benjamin Sally; Vivette D. D’Agati; Wilnelly Martinez-Ortiz; Z. Birsin Özçakar; Joseph David; Ali Rashidfarrokhi; Ada Yeste; Casandra Panea; Asiya Seema Chida; Milena Bogunovic; Ivaylo I. Ivanov; Francisco J. Quintana; Iñaki Sanz; Keith B. Elkon; Mustafa Tekin; Fatoş Yalçınkaya; Timothy Cardozo; Robert R. Clancy; Jill P. Buyon; Boris Reizis

Antibodies to DNA and chromatin drive autoimmunity in systemic lupus erythematosus (SLE). Null mutations and hypomorphic variants of the secreted deoxyribonuclease DNASE1L3 are linked to familial and sporadic SLE, respectively. We report that DNASE1L3-deficient mice rapidly develop autoantibodies to DNA and chromatin, followed by an SLE-like disease. Circulating DNASE1L3 is produced by dendritic cells and macrophages, and its levels inversely correlate with anti-DNA antibody response. DNASE1L3 is uniquely capable of digesting chromatin in microparticles released from apoptotic cells. Accordingly, DNASE1L3-deficient mice and human patients have elevated DNA levels in plasma, particularly in circulating microparticles. Murine and human autoantibody clones and serum antibodies from human SLE patients bind to DNASE1L3-sensitive chromatin on the surface of microparticles. Thus, extracellular microparticle-associated chromatin is a potential self-antigen normally digested by circulating DNASE1L3. The loss of this tolerance mechanism can contribute to SLE, and its restoration may represent a therapeutic opportunity in the disease.


Nature Communications | 2014

IL-21 induces IL-22 production in CD4+ T cells

Ada Yeste; Ivan D. Mascanfroni; Meghan Nadeau; Evan J Burns; Ann-Marcia Tukpah; Andrezza Santiago; Chuan Wu; Bonny Patel; Deepak Kumar; Francisco J. Quintana

IL-22 produced by innate lymphoid cells (ILCs) and CD4+ T cells plays an important role in host defense and mucosal homeostasis, thus it is important to investigate the mechanisms that regulate IL-22 production. We investigated the regulation IL-22 production by CD4+ T cells. Here we show that IL-21 triggers IL-22, but not IL-17 production by CD4+ T cells. STAT3, activated by IL-21, controls the epigenetic status of the il22 promoter and its interaction with the aryl hydrocarbon receptor (AhR). Moreover, IL-21 and AhR signaling in T cells control IL-22 production and the development of dextran sodium sulfate-induced colitis in ILC-deficient mice. Thus, we have identified IL-21 as an inducer of IL-22 production in CD4+ T cells in vitro and in vivo.


Science Signaling | 2016

Tolerogenic nanoparticles inhibit T cell–mediated autoimmunity through SOCS2

Ada Yeste; Maisa C. Takenaka; Ivan D. Mascanfroni; Meghan Nadeau; Jessica E. Kenison; Bonny Patel; Ann-Marcia Tukpah; Jenny Aurielle B. Babon; Megan E. DeNicola; Sally C. Kent; David Pozo; Francisco J. Quintana

Nanoparticles decrease disease severity and induce immune tolerance in a mouse model of type 1 diabetes. Nanoparticles restore tolerance Type 1 diabetes (T1D) is caused by the destruction of pancreatic β cells by inflammatory T cells. One strategy to treat T1D involves using suppressive T regulatory (Treg) cells that are grown in culture and then given back to patients to dampen the autoimmune response and induce tolerance. Yeste et al. used gold nanoparticles as a delivery mechanism to induce tolerance directly in a mouse model of T1D without having to grow immune cells ex vivo. The mice had increased numbers of Treg cells and decreased disease severity when given nanoparticles coated with an antigenic peptide of unprocessed insulin and a ligand that promotes the ability of dendritic cells to induce tolerance. These results suggest that nanoparticle-based therapies may be useful in restoring tolerance not only in T1D but also in other autoimmune diseases. Type 1 diabetes (T1D) is a T cell–dependent autoimmune disease that is characterized by the destruction of insulin-producing β cells in the pancreas. The administration to patients of ex vivo–differentiated FoxP3+ regulatory T (Treg) cells or tolerogenic dendritic cells (DCs) that promote Treg cell differentiation is considered a potential therapy for T1D; however, cell-based therapies cannot be easily translated into clinical practice. We engineered nanoparticles (NPs) to deliver both a tolerogenic molecule, the aryl hydrocarbon receptor (AhR) ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and the β cell antigen proinsulin (NPITE+Ins) to induce a tolerogenic phenotype in DCs and promote Treg cell generation in vivo. NPITE+Ins administration to 8-week-old nonobese diabetic mice suppressed autoimmune diabetes. NPITE+Ins induced a tolerogenic phenotype in DCs, which was characterized by a decreased ability to activate inflammatory effector T cells and was concomitant with the increased differentiation of FoxP3+ Treg cells. The induction of a tolerogenic phenotype in DCs by NPs was mediated by the AhR-dependent induction of Socs2, which resulted in inhibition of nuclear factor κB activation and proinflammatory cytokine production (properties of tolerogenic DCs). Together, these data suggest that NPs constitute a potential tool to reestablish tolerance in T1D and potentially other autoimmune disorders.

Collaboration


Dive into the Ada Yeste's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bonny Patel

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Howard L. Weiner

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ivan D. Mascanfroni

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Meghan Nadeau

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Vijay K. Kuchroo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Evan J Burns

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jessica E. Kenison

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Chen Zhu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Lior Mayo

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge