Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco J. Quintana is active.

Publication


Featured researches published by Francisco J. Quintana.


Nature | 2008

Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor.

Francisco J. Quintana; Alexandre S. Basso; Antonio Iglesias; Thomas Korn; Mauricio Farez; Estelle Bettelli; Mario Caccamo; Mohamed Oukka; Howard L. Weiner

Regulatory T cells (Treg) expressing the transcription factor Foxp3 control the autoreactive components of the immune system. The development of Treg cells is reciprocally related to that of pro-inflammatory T cells producing interleukin-17 (TH17). Although Treg cell dysfunction and/or TH17 cell dysregulation are thought to contribute to the development of autoimmune disorders, little is known about the physiological pathways that control the generation of these cell lineages. Here we report the identification of the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) as a regulator of Treg and TH17 cell differentiation in mice. AHR activation by its ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin induced functional Treg cells that suppressed experimental autoimmune encephalomyelitis. On the other hand, AHR activation by 6-formylindolo[3,2-b]carbazole interfered with Treg cell development, boosted TH17 cell differentiation and increased the severity of experimental autoimmune encephalomyelitis in mice. Thus, AHR regulates both Treg and TH17 cell differentiation in a ligand-specific fashion, constituting a unique target for therapeutic immunomodulation.


Nature Immunology | 2012

Induction and molecular signature of pathogenic TH17 cells

Youjin Lee; Amit Awasthi; Nir Yosef; Francisco J. Quintana; Sheng Xiao; Anneli Peters; Chuan Wu; Markus Kleinewietfeld; Sharon R. Kunder; David A. Hafler; Raymond A. Sobel; Aviv Regev; Vijay K. Kuchroo

Interleukin 17 (IL-17)-producing helper T cells (TH17 cells) are often present at the sites of tissue inflammation in autoimmune diseases, which has led to the conclusion that TH17 cells are main drivers of autoimmune tissue injury. However, not all TH17 cells are pathogenic; in fact, TH17 cells generated with transforming growth factor-β1 (TGF-β1) and IL-6 produce IL-17 but do not readily induce autoimmune disease without further exposure to IL-23. Here we found that the production of TGF-β3 by developing TH17 cells was dependent on IL-23, which together with IL-6 induced very pathogenic TH17 cells. Moreover, TGF-β3-induced TH17 cells were functionally and molecularly distinct from TGF-β1-induced TH17 cells and had a molecular signature that defined pathogenic effector TH17 cells in autoimmune disease.


Nature Immunology | 2010

The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27

Lionel Apetoh; Francisco J. Quintana; Caroline Pot; Nicole Joller; Sheng Xiao; Deepak Kumar; Evan J Burns; David H. Sherr; Howard L. Weiner; Vijay K. Kuchroo

Type 1 regulatory T cells (Tr1 cells ) that produce interleukin 10 (IL-10) are instrumental in the prevention of tissue inflammation, autoimmunity and graft-versus-host disease. The transcription factor c-Maf is essential for the induction of IL-10 by Tr1 cells, but the molecular mechanisms that lead to the development of these cells remain unclear. Here we show that the ligand-activated transcription factor aryl hydrocarbon receptor (AhR), which was induced by IL-27, acted in synergy with c-Maf to promote the development of Tr1 cells. After T cell activation under Tr1-skewing conditions, the AhR bound to c-Maf and promoted transactivation of the Il10 and Il21 promoters, which resulted in the generation of Tr1 cells and the amelioration of experimental autoimmune encephalomyelitis. Manipulating AhR signaling could therefore be beneficial in the resolution of excessive inflammatory responses.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis

Ada Yeste; Meghan Nadeau; Evan J Burns; Howard L. Weiner; Francisco J. Quintana

The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3+ Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)35–55 to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG35–55 expanded the FoxP3+ Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders.


Nature Immunology | 2010

Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3+ regulatory T cells

Roopali Gandhi; Deepak Kumar; Evan J Burns; Meghan Nadeau; Ben Dake; Alice Laroni; Deneen Kozoriz; Howard L. Weiner; Francisco J. Quintana

The aryl hydrocarbon receptor (AhR) participates in the differentiation of mouse regulatory T cells (Treg cells) and interleukin 17 (IL-17)-producing helper T cells (TH17 cells), but its role in human T cell differentiation is unknown. We investigated the role of AhR in the differentiation of human induced Treg cells (iTreg cells). We found that AhR activation promoted the differentiation of CD4+Foxp3− T cells, which produce IL-10 and control responder T cells through granzyme B. However, activation of AhR in the presence of transforming growth factor-β1 induced Foxp3+ iTreg cells, which suppress responder T cells through the ectonucleoside triphosphate diphosphohydrolase CD39. The induction of functional Foxp3+ iTreg cells required coordinated action of the transcriptional regulators Smad1 and Aiolos. Thus, AhR is a potential target through which functional iTreg cells could be induced in human autoimmune disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2010

An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis

Francisco J. Quintana; Gopal Murugaiyan; Mauricio Farez; Meike Mitsdoerffer; Ann-Marcia Tukpah; Evan J Burns; Howard L. Weiner

The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) participates in the differentiation of FoxP3+ Treg, Tr1 cells, and IL-17–producing T cells (Th17). Most of our understanding on the role of AHR on the FoxP3+ Treg compartment results from studies using the toxic synthetic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin. Thus, the physiological relevance of AHR signaling on FoxP3+ Treg in vivo is unclear. We studied mice that carry a GFP reporter in the endogenous foxp3 locus and a mutated AHR protein with reduced affinity for its ligands, and found that AHR signaling participates in the differentiation of FoxP3+ Treg in vivo. Moreover, we found that treatment with the endogenous AHR ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) given parenterally or orally induces FoxP3+ Treg that suppress experimental autoimmune encephalomyelitis. ITE acts not only on T cells, but also directly on dendritic cells to induce tolerogenic dendritic cells that support FoxP3+ Treg differentiation in a retinoic acid-dependent manner. Thus, our work demonstrates that the endogenous AHR ligand ITE promotes the induction of active immunologic tolerance by direct effects on dendritic and T cells, and identifies nontoxic endogenous AHR ligands as potential unique compounds for the treatment of autoimmune disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis

Francisco J. Quintana; Mauricio Farez; Vissia Viglietta; Antonio Iglesias; Yifat Merbl; Guillermo Izquierdo; Miguel Lucas; Alexandre S. Basso; Samia J. Khoury; Claudia F. Lucchinetti; Irun R. Cohen; Howard L. Weiner

Multiple sclerosis (MS) is a chronic relapsing disease of the central nervous system (CNS) in which immune processes are believed to play a major role. To date, there is no reliable method by which to characterize the immune processes and their changes associated with different forms of MS and disease progression. We performed antigen microarray analysis to characterize patterns of antibody reactivity in MS serum against a panel of CNS protein and lipid autoantigens and heat shock proteins. Informatic analysis consisted of a training set that was validated on a blinded test set. The results were further validated on an independent cohort of relapsing–remitting (RRMS) samples. We found unique autoantibody patterns that distinguished RRMS, secondary progressive (SPMS), and primary progressive (PPMS) MS from both healthy controls and other neurologic or autoimmune driven diseases including Alzheimers disease, adrenoleukodystropy, and lupus erythematosus. RRMS was characterized by autoantibodies to heat shock proteins that were not observed in PPMS or SPMS. In addition, RRMS, SPMS, and PPMS were characterized by unique patterns of reactivity to CNS antigens. Furthermore, we examined sera from patients with different immunopathologic patterns of MS as determined by brain biopsy, and we identified unique antibody patterns to lipids and CNS-derived peptides that were linked to each type of pathology. The demonstration of unique serum immune signatures linked to different stages and pathologic processes in MS provides an avenue to monitor MS and to characterize immunopathogenic mechanisms and therapeutic targets in the disease.


Journal of Immunology | 2004

Angiogenesis-Inflammation Cross-Talk: Vascular Endothelial Growth Factor Is Secreted by Activated T Cells and Induces Th1 Polarization

Felix Mor; Francisco J. Quintana; Irun R. Cohen

Vascular endothelial growth factor (VEGF) and its receptors are critical in angiogenesis. The main player in the secretion and response to VEGF is the endothelial cell. We initiated this study to test whether T cells can secrete VEGF and are able to respond to it. Here we show that VEGF is secreted by T cells on stimulation by specific Ag or by IL-2 and by hypoxia; thus, activated T cells might enhance angiogenesis. Hypoxia also induced the expression in T cells of VEGFR2, suggesting that T cells might also respond to VEGF. Indeed, VEGF augmented IFN-γ and inhibited IL-10 secretion by T cells responding to mitogen or Ag; thus, VEGF can enhance a Th1 phenotype. Encephalitogenic T cells stimulated in the presence of VEGF caused more severe and prolonged encephalomyelitis. Thus, T cells can play a role in angiogenesis by delivering VEGF to inflammatory sites, and VEGF can augment proinflammatory T cell differentiation.


Immunity | 2014

Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses.

Nicole Joller; Ester Lozano; Patrick R. Burkett; Bonny Patel; Sheng Xiao; Chen Zhu; Junrong Xia; Tze G. Tan; Esen Sefik; Vijay Yajnik; Arlene H. Sharpe; Francisco J. Quintana; Diane Mathis; Christophe Benoist; David A. Hafler; Vijay K. Kuchroo

Foxp3(+) T regulatory (Treg) cells regulate immune responses and maintain self-tolerance. Recent work shows that Treg cells are comprised of many subpopulations with specialized regulatory functions. Here we identified Foxp3(+) T cells expressing the coinhibitory molecule TIGIT as a distinct Treg cell subset that specifically suppresses proinflammatory T helper 1 (Th1) and Th17 cell, but not Th2 cell responses. Transcriptional profiling characterized TIGIT(+) Treg cells as an activated Treg cell subset with high expression of Treg signature genes. Ligation of TIGIT on Treg cells induced expression of the effector molecule fibrinogen-like protein 2 (Fgl2), which promoted Treg-cell-mediated suppression of T effector cell proliferation. In addition, Fgl2 was necessary to prevent suppression of Th2 cytokine production in a model of allergic airway inflammation. TIGIT expression therefore identifies a Treg cell subset that demonstrates selectivity for suppression of Th1 and Th17 cell but not Th2 cell responses.


Immunity | 2014

Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function

Dror S. Shouval; Amlan Biswas; Jeremy A. Goettel; Katelyn McCann; Evan Conaway; Naresh Singh Redhu; Ivan D. Mascanfroni; Ziad Al Adham; Sydney Lavoie; Mouna Ibourk; Deanna D. Nguyen; Janneke N. Samsom; Johanna C. Escher; Raz Somech; Batia Weiss; Rita Beier; Laurie S. Conklin; Christen L. Ebens; Fernanda Stephanie Santos; Alexandre Rodrigues Ferreira; Mary Sherlock; Atul K. Bhan; Werner Müller; J. Rodrigo Mora; Francisco J. Quintana; Christoph Klein; Aleixo M. Muise; Bruce H. Horwitz; Scott B. Snapper

Intact interleukin-10 receptor (IL-10R) signaling on effector and T regulatory (Treg) cells are each independently required to maintain immune tolerance. Here we show that IL-10 sensing by innate immune cells, independent of its effects on T cells, was critical for regulating mucosal homeostasis. Following wild-type (WT) CD4(+) T cell transfer, Rag2(-/-)Il10rb(-/-) mice developed severe colitis in association with profound defects in generation and function of Treg cells. Moreover, loss of IL-10R signaling impaired the generation and function of anti-inflammatory intestinal and bone-marrow-derived macrophages and their ability to secrete IL-10. Importantly, transfer of WT but not Il10rb(-/-) anti-inflammatory macrophages ameliorated colitis induction by WT CD4(+) T cells in Rag2(-/-)Il10rb(-/-) mice. Similar alterations in the generation and function of anti-inflammatory macrophages were observed in IL-10R-deficient patients with very early onset inflammatory bowel disease. Collectively, our studies define innate immune IL-10R signaling as a key factor regulating mucosal immune homeostasis in mice and humans.

Collaboration


Dive into the Francisco J. Quintana's collaboration.

Top Co-Authors

Avatar

Howard L. Weiner

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Irun R. Cohen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ada Yeste

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Mauricio Farez

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Bonny Patel

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ivan D. Mascanfroni

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Roopali Gandhi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Vijay K. Kuchroo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Pia Kivisäkk

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jessica E. Kenison

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge