Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adaikalavan Ramasamy is active.

Publication


Featured researches published by Adaikalavan Ramasamy.


Nature Genetics | 2012

Identification of common variants associated with human hippocampal and intracranial volumes

Jason L. Stein; Sarah E. Medland; A A Vasquez; Derrek P. Hibar; R. E. Senstad; Anderson M. Winkler; Roberto Toro; K Appel; R. Bartecek; Ørjan Bergmann; Manon Bernard; Andrew Anand Brown; Dara M. Cannon; M. Mallar Chakravarty; Andrea Christoforou; M. Domin; Oliver Grimm; Marisa Hollinshead; Avram J. Holmes; Georg Homuth; J.J. Hottenga; Camilla Langan; Lorna M. Lopez; Narelle K. Hansell; Kristy Hwang; Sungeun Kim; Gonzalo Laje; Phil H. Lee; Xinmin Liu; Eva Loth

Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimers disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).


PLOS ONE | 2011

A Comprehensive Evaluation of Potential Lung Function Associated Genes in the SpiroMeta General Population Sample

Ma’en Obeidat; Louise V. Wain; Nick Shrine; Noor Kalsheker; María Soler Artigas; Emmanouela Repapi; Paul R. Burton; Toby Johnson; Adaikalavan Ramasamy; Jing Hua Zhao; Guangju Zhai; Jennifer E. Huffman; Veronique Vitart; Eva Albrecht; Wilmar Igl; Anna-Liisa Hartikainen; Anneli Pouta; Gemma Cadby; Jennie Hui; Lyle J. Palmer; David Hadley; Wendy L. McArdle; Alicja R. Rudnicka; Inês Barroso; Ruth J. F. Loos; Nicholas J. Wareham; Massimo Mangino; Nicole Soranzo; Tim D. Spector; Sven Gläser

Rationale Lung function measures are heritable traits that predict population morbidity and mortality and are essential for the diagnosis of chronic obstructive pulmonary disease (COPD). Variations in many genes have been reported to affect these traits, but attempts at replication have provided conflicting results. Recently, we undertook a meta-analysis of Genome Wide Association Study (GWAS) results for lung function measures in 20,288 individuals from the general population (the SpiroMeta consortium). Objectives To comprehensively analyse previously reported genetic associations with lung function measures, and to investigate whether single nucleotide polymorphisms (SNPs) in these genomic regions are associated with lung function in a large population sample. Methods We analysed association for SNPs tagging 130 genes and 48 intergenic regions (+/−10 kb), after conducting a systematic review of the literature in the PubMed database for genetic association studies reporting lung function associations. Results The analysis included 16,936 genotyped and imputed SNPs. No loci showed overall significant association for FEV1 or FEV1/FVC traits using a carefully defined significance threshold of 1.3×10−5. The most significant loci associated with FEV1 include SNPs tagging MACROD2 (P = 6.81×10−5), CNTN5 (P = 4.37×10−4), and TRPV4 (P = 1.58×10−3). Among ever-smokers, SERPINA1 showed the most significant association with FEV1 (P = 8.41×10−5), followed by PDE4D (P = 1.22×10−4). The strongest association with FEV1/FVC ratio was observed with ABCC1 (P = 4.38×10−4), and ESR1 (P = 5.42×10−4) among ever-smokers. Conclusions Polymorphisms spanning previously associated lung function genes did not show strong evidence for association with lung function measures in the SpiroMeta consortium population. Common SERPINA1 polymorphisms may affect FEV1 among smokers in the general population.


Nature Neuroscience | 2014

Genetic variability in the regulation of gene expression in ten regions of the human brain

Adaikalavan Ramasamy; Daniah Trabzuni; Sebastian Guelfi; Vibin Varghese; Colin Smith; Robert Walker; Tisham De; Lachlan Coin; Rohan de Silva; Mark R. Cookson; Andrew Singleton; John Hardy; Mina Ryten; Michael E. Weale

Germ-line genetic control of gene expression occurs via expression quantitative trait loci (eQTLs). We present a large, exon-specific eQTL data set covering ten human brain regions. We found that cis-eQTL signals (within 1 Mb of their target gene) were numerous, and many acted heterogeneously among regions and exons. Co-regulation analysis of shared eQTL signals produced well-defined modules of region-specific co-regulated genes, in contrast to standard coexpression analysis of the same samples. We report cis-eQTL signals for 23.1% of catalogued genome-wide association study hits for adult-onset neurological disorders. The data set is publicly available via public data repositories and via http://www.braineac.org/. Our study increases our understanding of the regulation of gene expression in the human brain and will be of value to others pursuing functional follow-up of disease-associated variants.


Nature | 2014

Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease

Carlos Cruchaga; Celeste M. Karch; Sheng Chih Jin; Bruno A. Benitez; Yefei Cai; Rita Guerreiro; Oscar Harari; Joanne Norton; John Budde; Sarah Bertelsen; Amanda T. Jeng; Breanna Cooper; Tara Skorupa; David Carrell; Denise Levitch; Simon Hsu; Jiyoon Choi; Mina Ryten; John Hardy; Daniah Trabzuni; Michael E. Weale; Adaikalavan Ramasamy; Colin Smith; Celeste Sassi; Jose Bras; J. Raphael Gibbs; Dena Hernandez; Michelle K. Lupton; John Powell; Paola Forabosco

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimers disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.


The Lancet | 2011

Identification of IL6R and chromosome 11q13.5 as risk loci for asthma

Manuel A. Ferreira; Melanie C. Matheson; David L. Duffy; Guy B. Marks; Jennie Hui; Peter Le Souef; Patrick Danoy; Svetlana Baltic; Dale R. Nyholt; Mark A. Jenkins; Catherine M. Hayden; Gonneke Willemsen; Wei Ang; Mikko Kuokkanen; John Beilby; Faang Cheah; Eco J. C. de Geus; Adaikalavan Ramasamy; Sailaja Vedantam; Veikko Salomaa; Pamela A. F. Madden; Andrew C. Heath; John L. Hopper; Peter M. Visscher; Bill Musk; Stephen Leeder; Marjo-Riitta Järvelin; Craig E. Pennell; Doerret I Boomsma; Joel N. Hirschhorn

BACKGROUND We aimed to identify novel genetic variants affecting asthma risk, since these might provide novel insights into molecular mechanisms underlying the disease. METHODS We did a genome-wide association study (GWAS) in 2669 physician-diagnosed asthmatics and 4528 controls from Australia. Seven loci were prioritised for replication after combining our results with those from the GABRIEL consortium (n=26,475), and these were tested in an additional 25,358 independent samples from four in-silico cohorts. Quantitative multi-marker scores of genetic load were constructed on the basis of results from the GABRIEL study and tested for association with asthma in our Australian GWAS dataset. FINDINGS Two loci were confirmed to associate with asthma risk in the replication cohorts and reached genome-wide significance in the combined analysis of all available studies (n=57,800): rs4129267 (OR 1·09, combined p=2·4×10(-8)) in the interleukin-6 receptor (IL6R) gene and rs7130588 (OR 1·09, p=1·8×10(-8)) on chromosome 11q13.5 near the leucine-rich repeat containing 32 gene (LRRC32, also known as GARP). The 11q13.5 locus was significantly associated with atopic status among asthmatics (OR 1·33, p=7×10(-4)), suggesting that it is a risk factor for allergic but not non-allergic asthma. Multi-marker association results are consistent with a highly polygenic contribution to asthma risk, including loci with weak effects that might be shared with other immune-related diseases, such as NDFIP1, HLA-B, LPP, and BACH2. INTERPRETATION The IL6R association further supports the hypothesis that cytokine signalling dysregulation affects asthma risk, and raises the possibility that an IL6R antagonist (tocilizumab) may be effective to treat the disease, perhaps in a genotype-dependent manner. Results for the 11q13.5 locus suggest that it directly increases the risk of allergic sensitisation which, in turn, increases the risk of subsequent development of asthma. Larger or more functionally focused studies are needed to characterise the many loci with modest effects that remain to be identified for asthma. FUNDING National Health and Medical Research Council of Australia. A full list of funding sources is provided in the webappendix.


PLOS ONE | 2012

Genome-Wide Association Studies of Asthma in Population-Based Cohorts Confirm Known and Suggested Loci and Identify an Additional Association near HLA

Adaikalavan Ramasamy; Mikko Kuokkanen; Sailaja Vedantam; Zofia K. Z. Gajdos; Alexessander Couto Alves; Helen N. Lyon; Manuel A. Ferreira; David P. Strachan; Jing Hua Zhao; Michael J. Abramson; Matthew A. Brown; Lachlan Coin; Shyamali C. Dharmage; David L. Duffy; Tari Haahtela; Andrew C. Heath; Christer Janson; Mika Kähönen; Kay-Tee Khaw; Jaana Laitinen; Peter Le Souef; Terho Lehtimäki; Pamela A. F. Madden; Guy B. Marks; Nicholas G. Martin; Melanie C. Matheson; C. Palmer; Aarno Palotie; Anneli Pouta; Colin F. Robertson

Rationale Asthma has substantial morbidity and mortality and a strong genetic component, but identification of genetic risk factors is limited by availability of suitable studies. Objectives To test if population-based cohorts with self-reported physician-diagnosed asthma and genome-wide association (GWA) data could be used to validate known associations with asthma and identify novel associations. Methods The APCAT (Analysis in Population-based Cohorts of Asthma Traits) consortium consists of 1,716 individuals with asthma and 16,888 healthy controls from six European-descent population-based cohorts. We examined associations in APCAT of thirteen variants previously reported as genome-wide significant (P<5x10−8) and three variants reported as suggestive (P<5×10−7). We also searched for novel associations in APCAT (Stage 1) and followed-up the most promising variants in 4,035 asthmatics and 11,251 healthy controls (Stage 2). Finally, we conducted the first genome-wide screen for interactions with smoking or hay fever. Main Results We observed association in the same direction for all thirteen previously reported variants and nominally replicated ten of them. One variant that was previously suggestive, rs11071559 in RORA, now reaches genome-wide significance when combined with our data (P = 2.4×10−9). We also identified two genome-wide significant associations: rs13408661 near IL1RL1/IL18R1 (P Stage1+Stage2 = 1.1x10−9), which is correlated with a variant recently shown to be associated with asthma (rs3771180), and rs9268516 in the HLA region (P Stage1+Stage2 = 1.1x10−8), which appears to be independent of previously reported associations in this locus. Finally, we found no strong evidence for gene-environment interactions with smoking or hay fever status. Conclusions Population-based cohorts with simple asthma phenotypes represent a valuable and largely untapped resource for genetic studies of asthma.


Journal of Neurochemistry | 2011

Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies

Daniah Trabzuni; Mina Ryten; Robert Walker; Colin Smith; Sabaena Imran; Adaikalavan Ramasamy; Michael E. Weale; John Hardy

J. Neurochem. (2011) 119, 275–282.


The Lancet Respiratory Medicine | 2015

Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank.

Louise V. Wain; Nick Shrine; Suzanne Miller; Victoria E. Jackson; Ioanna Ntalla; María Soler Artigas; Charlotte K. Billington; Abdul Kader Kheirallah; Richard J. Allen; James P. Cook; Kelly Probert; Ma'en Obeidat; Yohan Bossé; Ke Hao; Dirkje S. Postma; Peter D. Paré; Adaikalavan Ramasamy; Reedik Mägi; Evelin Mihailov; Eva Reinmaa; Erik Melén; Jared O'Connell; Eleni Frangou; Olivier Delaneau; Colin Freeman; Desislava Petkova; Mark I. McCarthy; Ian Sayers; Panos Deloukas; Richard Hubbard

Summary Background Understanding the genetic basis of airflow obstruction and smoking behaviour is key to determining the pathophysiology of chronic obstructive pulmonary disease (COPD). We used UK Biobank data to study the genetic causes of smoking behaviour and lung health. Methods We sampled individuals of European ancestry from UK Biobank, from the middle and extremes of the forced expiratory volume in 1 s (FEV1) distribution among heavy smokers (mean 35 pack-years) and never smokers. We developed a custom array for UK Biobank to provide optimum genome-wide coverage of common and low-frequency variants, dense coverage of genomic regions already implicated in lung health and disease, and to assay rare coding variants relevant to the UK population. We investigated whether there were shared genetic causes between different phenotypes defined by extremes of FEV1. We also looked for novel variants associated with extremes of FEV1 and smoking behaviour and assessed regions of the genome that had already shown evidence for a role in lung health and disease. We set genome-wide significance at p<5 × 10−8. Findings UK Biobank participants were recruited from March 15, 2006, to July 7, 2010. Sample selection for the UK BiLEVE study started on Nov 22, 2012, and was completed on Dec 20, 2012. We selected 50 008 unique samples: 10 002 individuals with low FEV1, 10 000 with average FEV1, and 5002 with high FEV1 from each of the heavy smoker and never smoker groups. We noted a substantial sharing of genetic causes of low FEV1 between heavy smokers and never smokers (p=2·29 × 10−16) and between individuals with and without doctor-diagnosed asthma (p=6·06 × 10−11). We discovered six novel genome-wide significant signals of association with extremes of FEV1, including signals at four novel loci (KANSL1, TSEN54, TET2, and RBM19/TBX5) and independent signals at two previously reported loci (NPNT and HLA-DQB1/HLA-DQA2). These variants also showed association with COPD, including in individuals with no history of smoking. The number of copies of a 150 kb region containing the 5′ end of KANSL1, a gene that is important for epigenetic gene regulation, was associated with extremes of FEV1. We also discovered five new genome-wide significant signals for smoking behaviour, including a variant in NCAM1 (chromosome 11) and a variant on chromosome 2 (between TEX41 and PABPC1P2) that has a trans effect on expression of NCAM1 in brain tissue. Interpretation By sampling from the extremes of the lung function distribution in UK Biobank, we identified novel genetic causes of lung function and smoking behaviour. These results provide new insight into the specific mechanisms underlying airflow obstruction, COPD, and tobacco addiction, and show substantial shared genetic architecture underlying airflow obstruction across individuals, irrespective of smoking behaviour and other airway disease. Funding Medical Research Council.


Genome Biology | 2013

Gene expression changes with age in skin, adipose tissue, blood and brain

Daniel Glass; Ana Viñuela; Matthew N. Davies; Adaikalavan Ramasamy; Leopold Parts; David Knowles; Andrew Anand Brown; Åsa K. Hedman; Kerrin S. Small; Alfonso Buil; Elin Grundberg; Alexandra C. Nica; Paola Di Meglio; Frank O. Nestle; Mina Ryten; Richard Durbin; Mark I. McCarthy; Panagiotis Deloukas; Emmanouil T. Dermitzakis; Michael E. Weale; Veronique Bataille; Tim D. Spector

BackgroundPrevious studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age.ResultsUsing a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues.ConclusionsSkin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.


Nature Communications | 2013

Widespread sex differences in gene expression and splicing in the adult human brain

Daniah Trabzuni; Adaikalavan Ramasamy; Sabaena Imran; Robert Walker; Colin Smith; Michael E. Weale; John Hardy; Mina Ryten

There is strong evidence to show that men and women differ in terms of neurodevelopment, neurochemistry and susceptibility to neurodegenerative and neuropsychiatric disease. The molecular basis of these differences remains unclear. Progress in this field has been hampered by the lack of genome-wide information on sex differences in gene expression and in particular splicing in the human brain. Here we address this issue by using post-mortem adult human brain and spinal cord samples originating from 137 neuropathologically confirmed control individuals to study whole-genome gene expression and splicing in 12 CNS regions. We show that sex differences in gene expression and splicing are widespread in adult human brain, being detectable in all major brain regions and involving 2.5% of all expressed genes. We give examples of genes where sex-biased expression is both disease-relevant and likely to have functional consequences, and provide evidence suggesting that sex biases in expression may reflect sex-biased gene regulatory structures.

Collaboration


Dive into the Adaikalavan Ramasamy's collaboration.

Top Co-Authors

Avatar

Mina Ryten

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Daniah Trabzuni

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Hardy

University College London

View shared research outputs
Top Co-Authors

Avatar

Colin Smith

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah Jarvis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge