Jeremiah D. Degenhardt
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeremiah D. Degenhardt.
Nature | 2012
Somasekar Seshagiri; Eric Stawiski; Steffen Durinck; Zora Modrusan; Elaine E. Storm; Caitlin B. Conboy; Subhra Chaudhuri; Yinghui Guan; Vasantharajan Janakiraman; Bijay S. Jaiswal; Joseph Guillory; Connie Ha; Gerrit J. P. Dijkgraaf; Jeremy Stinson; Florian Gnad; Melanie A. Huntley; Jeremiah D. Degenhardt; Peter M. Haverty; Richard Bourgon; Weiru Wang; Hartmut Koeppen; Robert Gentleman; Timothy K. Starr; Zemin Zhang; David A. Largaespada; Thomas D. Wu; Frederic J. de Sauvage
Identifying and understanding changes in cancer genomes is essential for the development of targeted therapeutics. Here we analyse systematically more than 70 pairs of primary human colon tumours by applying next-generation sequencing to characterize their exomes, transcriptomes and copy-number alterations. We have identified 36,303 protein-altering somatic changes that include several new recurrent mutations in the Wnt pathway gene TCF7L2, chromatin-remodelling genes such as TET2 and TET3 and receptor tyrosine kinases including ERBB3. Our analysis for significantly mutated cancer genes identified 23 candidates, including the cell cycle checkpoint kinase ATM. Copy-number and RNA-seq data analysis identified amplifications and corresponding overexpression of IGF2 in a subset of colon tumours. Furthermore, using RNA-seq data we identified multiple fusion transcripts including recurrent gene fusions involving R-spondin family members RSPO2 and RSPO3 that together occur in 10% of colon tumours. The RSPO fusions were mutually exclusive with APC mutations, indicating that they probably have a role in the activation of Wnt signalling and tumorigenesis. Consistent with this we show that the RSPO fusion proteins were capable of potentiating Wnt signalling. The R-spondin gene fusions and several other gene mutations identified in this study provide new potential opportunities for therapeutic intervention in colon cancer.
Nature | 2010
Bridgett M. vonHoldt; John P. Pollinger; Kirk E. Lohmueller; Eunjung Han; Heidi G. Parker; Pascale Quignon; Jeremiah D. Degenhardt; Adam R. Boyko; Dent Earl; Adam Auton; Andrew R. Reynolds; Kasia Bryc; Abra Brisbin; James C. Knowles; Dana S. Mosher; Tyrone C. Spady; Abdel G. Elkahloun; Eli Geffen; Malgorzata Pilot; Włodzimierz Jędrzejewski; Claudia Greco; Ettore Randi; Danika L. Bannasch; Alan N. Wilton; Jeremy Shearman; Marco Musiani; Michelle Cargill; Paul Glyn Jones; Zuwei Qian; Wei Huang
Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.
PLOS Genetics | 2008
Adam R. Boyko; Scott Williamson; Amit Indap; Jeremiah D. Degenhardt; Ryan D. Hernandez; Kirk E. Lohmueller; Mark D. Adams; Steffen Schmidt; John J. Sninsky; Shamil R. Sunyaev; Thomas J. White; Rasmus Nielsen; Andrew G. Clark; Carlos Bustamante
Quantifying the distribution of fitness effects among newly arising mutations in the human genome is key to resolving important debates in medical and evolutionary genetics. Here, we present a method for inferring this distribution using Single Nucleotide Polymorphism (SNP) data from a population with non-stationary demographic history (such as that of modern humans). Application of our method to 47,576 coding SNPs found by direct resequencing of 11,404 protein coding-genes in 35 individuals (20 European Americans and 15 African Americans) allows us to assess the relative contribution of demographic and selective effects to patterning amino acid variation in the human genome. We find evidence of an ancient population expansion in the sample with African ancestry and a relatively recent bottleneck in the sample with European ancestry. After accounting for these demographic effects, we find strong evidence for great variability in the selective effects of new amino acid replacing mutations. In both populations, the patterns of variation are consistent with a leptokurtic distribution of selection coefficients (e.g., gamma or log-normal) peaked near neutrality. Specifically, we predict 27–29% of amino acid changing (nonsynonymous) mutations are neutral or nearly neutral (|s|<0.01%), 30–42% are moderately deleterious (0.01%<|s|<1%), and nearly all the remainder are highly deleterious or lethal (|s|>1%). Our results are consistent with 10–20% of amino acid differences between humans and chimpanzees having been fixed by positive selection with the remainder of differences being neutral or nearly neutral. Our analysis also predicts that many of the alleles identified via whole-genome association mapping may be selectively neutral or (formerly) positively selected, implying that deleterious genetic variation affecting disease phenotype may be missed by this widely used approach for mapping genes underlying complex traits.
Nature | 2011
Devin P. Locke; LaDeana W. Hillier; Wesley C. Warren; Kim C. Worley; Lynne V. Nazareth; Donna M. Muzny; Shiaw-Pyng Yang; Zhengyuan Wang; Asif T. Chinwalla; Patrick Minx; Makedonka Mitreva; Lisa Cook; Kim D. Delehaunty; Catrina C. Fronick; Heather K. Schmidt; Lucinda A. Fulton; Robert S. Fulton; Joanne O. Nelson; Vincent Magrini; Craig S. Pohl; Tina Graves; Chris Markovic; Andy Cree; Huyen Dinh; Jennifer Hume; Christie Kovar; Gerald Fowler; Gerton Lunter; Stephen Meader; Andreas Heger
‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.
PLOS Biology | 2010
Adam R. Boyko; Pascale Quignon; Lin Li; Jeffrey J. Schoenebeck; Jeremiah D. Degenhardt; Kirk E. Lohmueller; Keyan Zhao; Abra Brisbin; Heidi G. Parker; Bridgett M. vonHoldt; Michele Cargill; Adam Auton; Andrew R. Reynolds; Abdel G. Elkahloun; Marta Castelhano; Dana S. Mosher; Nathan B. Sutter; Gary S. Johnson; John Novembre; Melissa J. Hubisz; Adam Siepel; Robert K. Wayne; Carlos Bustamante; Elaine A. Ostrander
The largest genetic study to date of morphology in domestic dogs identifies genes controlling nearly 100 morphological traits and identifies important trends in phenotypic variation within this species.
Nature Biotechnology | 2015
Christiaan Klijn; Steffen Durinck; Eric Stawiski; Peter M. Haverty; Zhaoshi Jiang; Hanbin Liu; Jeremiah D. Degenhardt; Oleg Mayba; Florian Gnad; Jinfeng Liu; Gregoire Pau; Jens Reeder; Yi Cao; Kiran Mukhyala; Suresh Selvaraj; Mamie Yu; Gregory J Zynda; Matthew J. Brauer; Thomas D. Wu; Robert Gentleman; Gerard Manning; Robert L. Yauch; Richard Bourgon; David Stokoe; Zora Modrusan; Richard M. Neve; Frederic J. de Sauvage; Jeffrey Settleman; Somasekar Seshagiri; Zemin Zhang
Tumor-derived cell lines have served as vital models to advance our understanding of oncogene function and therapeutic responses. Although substantial effort has been made to define the genomic constitution of cancer cell line panels, the transcriptome remains understudied. Here we describe RNA sequencing and single-nucleotide polymorphism (SNP) array analysis of 675 human cancer cell lines. We report comprehensive analyses of transcriptome features including gene expression, mutations, gene fusions and expression of non-human sequences. Of the 2,200 gene fusions catalogued, 1,435 consist of genes not previously found in fusions, providing many leads for further investigation. We combine multiple genome and transcriptome features in a pathway-based approach to enhance prediction of response to targeted therapeutics. Our results provide a valuable resource for studies that use cancer cell lines.
Molecular Biology and Evolution | 2009
Aida M. Andrés; Melissa J. Hubisz; Amit Indap; Dara G. Torgerson; Jeremiah D. Degenhardt; Adam R. Boyko; Ryan N. Gutenkunst; Thomas J. White; Eric D. Green; Carlos Bustamante; Andrew G. Clark; Rasmus Nielsen
Balancing selection is potentially an important biological force for maintaining advantageous genetic diversity in populations, including variation that is responsible for long-term adaptation to the environment. By serving as a means to maintain genetic variation, it may be particularly relevant to maintaining phenotypic variation in natural populations. Nevertheless, its prevalence and specific targets in the human genome remain largely unknown. We have analyzed the patterns of diversity and divergence of 13,400 genes in two human populations using an unbiased single-nucleotide polymorphism data set, a genome-wide approach, and a method that incorporates demography in neutrality tests. We identified an unbiased catalog of genes with signatures of long-term balancing selection, which includes immunity genes as well as genes encoding keratins and membrane channels; the catalog also shows enrichment in functional categories involved in cellular structure. Patterns are mostly concordant in the two populations, with a small fraction of genes showing population-specific signatures of selection. Power considerations indicate that our findings represent a subset of all targets in the genome, suggesting that although balancing selection may not have an obvious impact on a large proportion of human genes, it is a key force affecting the evolution of a number of genes in humans.
Genome Research | 2009
Adam Auton; Katarzyna Bryc; Adam R. Boyko; Kirk E. Lohmueller; John Novembre; Andrew R. Reynolds; Amit Indap; Mark H. Wright; Jeremiah D. Degenhardt; Ryan N. Gutenkunst; Karen S. King; Matthew R. Nelson; Carlos Bustamante
Characterizing patterns of genetic variation within and among human populations is important for understanding human evolutionary history and for careful design of medical genetic studies. Here, we analyze patterns of variation across 443,434 single nucleotide polymorphisms (SNPs) genotyped in 3845 individuals from four continental regions. This unique resource allows us to illuminate patterns of diversity in previously under-studied populations at the genome-wide scale including Latin America, South Asia, and Southern Europe. Key insights afforded by our analysis include quantifying the degree of admixture in a large collection of individuals from Guadalajara, Mexico; identifying language and geography as key determinants of population structure within India; and elucidating a north-south gradient in haplotype diversity within Europe. We also present a novel method for identifying long-range tracts of homozygosity indicative of recent common ancestry. Application of our approach suggests great variation within and among populations in the extent of homozygosity, suggesting both demographic history (such as population bottlenecks) and recent ancestry events (such as consanguinity) play an important role in patterning variation in large modern human populations.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Adam R. Boyko; Ryan H. Boyko; Corin M. Boyko; Heidi G. Parker; Marta Castelhano; Liz Corey; Jeremiah D. Degenhardt; Adam Auton; Marius Hedimbi; Robert Kityo; Elaine A. Ostrander; Jeffrey J. Schoenebeck; Rory J. Todhunter; Paul D. Jones; Carlos Bustamante
High genetic diversity of East Asian village dogs has recently been used to argue for an East Asian origin of the domestic dog. However, global village dog genetic diversity and the extent to which semiferal village dogs represent distinct, indigenous populations instead of admixtures of various dog breeds has not been quantified. Understanding these issues is critical to properly reconstructing the timing, number, and locations of dog domestication. To address these questions, we sampled 318 village dogs from 7 regions in Egypt, Uganda, and Namibia, measuring genetic diversity >680 bp of the mitochondrial D-loop, 300 SNPs, and 89 microsatellite markers. We also analyzed breed dogs, including putatively African breeds (Afghan hounds, Basenjis, Pharaoh hounds, Rhodesian ridgebacks, and Salukis), Puerto Rican street dogs, and mixed breed dogs from the United States. Village dogs from most African regions appear genetically distinct from non-native breed and mixed-breed dogs, although some individuals cluster genetically with Puerto Rican dogs or United States breed mixes instead of with neighboring village dogs. Thus, African village dogs are a mosaic of indigenous dogs descended from early migrants to Africa, and non-native, breed-admixed individuals. Among putatively African breeds, Pharaoh hounds, and Rhodesian ridgebacks clustered with non-native rather than indigenous African dogs, suggesting they have predominantly non-African origins. Surprisingly, we find similar mtDNA haplotype diversity in African and East Asian village dogs, potentially calling into question the hypothesis of an East Asian origin for dog domestication.
Human Biology | 2012
Abra Brisbin; Katarzyna Bryc; Jake K. Byrnes; Fouad Zakharia; Larsson Omberg; Jeremiah D. Degenhardt; Andrew R. Reynolds; Harry Ostrer; Jason G. Mezey; Carlos Bustamante
Abstract Identifying ancestry along each chromosome in admixed individuals provides a wealth of information for understanding the population genetic history of admixture events and is valuable for admixture mapping and identifying recent targets of selection. We present PCAdmix (available at https://sites.google.com/site/pcadmix/home), a Principal Components-based algorithm for determining ancestry along each chromosome from a high-density, genome-wide set of phased single-nucleotide polymorphism (SNP) genotypes of admixed individuals. We compare our method to HAPMIX on simulated data from two ancestral populations, and we find high concordance between the methods. Our method also has better accuracy than LAMP when applied to three-population admixture, a situation as yet unaddressed by HAPMIX. Finally, we apply our method to a data set of four Latino populations with European, African, and Native American ancestry. We find evidence of assortative mating in each of the four populations, and we identify regions of shared ancestry that may be recent targets of selection and could serve as candidate regions for admixture-based association mapping.