Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam C. Knight is active.

Publication


Featured researches published by Adam C. Knight.


Sports Biomechanics | 2012

Development of a fulcrum methodology to replicate the lateral ankle sprain mechanism and measure dynamic inversion speed

Adam C. Knight; Wendi H. Weimar

When the ankle is forced into inversion, the speed at which this movement occurs may affect the extent of injury. The purpose of this investigation was to develop a fulcrum device to mimic the mechanism of a lateral ankle sprain and to determine the reliability and validity of the temporal variables produced by this device. Additionally, this device was used to determine if a single previous lateral ankle sprain or ankle taping effected the time to maximum inversion and/or mean inversion speed. Twenty-six participants (13 with history of a single lateral ankle sprain and 13 with no history of injury) completed the testing. The participants completed testing on three separate days, performing 10 trials with the fulcrum per leg on each testing day, and tape was applied to both ankles on one testing day. No significant interactions or main effects were found for either previous injury or ankle taping, but good reliability was found for time to maximum inversion (ICC = .81) and mean inversion speed (ICC = .79). The findings suggest that although neither variable was influenced by the history of a single previous lateral ankle sprain or ankle taping, both variables demonstrated good reliability and construct validity, but not discriminative validity.


Sports Biomechanics | 2012

Effects of previous lateral ankle sprain and taping on the latency of the peroneus longus

Adam C. Knight; Wendi H. Weimar

The latency of the peroneus longus may be a key factor in the prevention of lateral ankle sprains (LASs). In addition, ankle taping is often applied to help prevent LASs. The purpose of this study was to determine the effects of a previous LAS and ankle taping on the latency of the peroneus longus after an inversion perturbation. Twenty-six participants, including 13 participants with no previous history of a LAS and 13 participants with a history of a single LAS completed the testing. Ankle taping was applied in a closed basket weave technique on one of the two testing days. The latency of the peroneus longus was determined by the onset of muscle activity exceeding 10 SD from baseline activity, after initiation of the 25° inversion perturbation. A significant main effect (p < 0.05) was present for the ankle support condition, with ankle taping causing a significant reduction in latency of the peroneus longus (65.04 ± 10.81 to 57.70 ± 9.39 ms). There was no difference (p>0.05) in latency between the injury groups. Ankle taping, immediately after application, reduces the latency of the peroneus longus among participants with and without a history of a LAS.


International Journal of Occupational Safety and Ergonomics | 2017

Slip initiation in alternative and slip-resistant footwear

Harish Chander; Chip Wade; John C. Garner; Adam C. Knight

Slips occur as a result of failure of normal locomotion. The purpose of this study is to analyze the impact of alternative footwear (Crocs™, flip-flops) and an industry standard low-top slip-resistant shoe (SRS) under multiple gait trials (normal dry, unexpected slip, alert slip and expected slip) on lower extremity joint kinematics, kinetics and muscle activity. Eighteen healthy male participants (age: 22.28 ± 2.2 years; height: 177.66 ± 6.9 cm; mass: 79.27 ± 7.6 kg) completed the study. Kinematic, kinetic and muscle activity variables were analyzed using a 3(footwear) × 4(gait trials) repeated-measures analysis of variance at p = 0.05. Greater plantar flexion angles, lower ground reaction forces and greater muscle activity were seen on slip trials with the alternative footwear. During slip events, SRS closely resembled normal dry biomechanics, suggesting it to be a safer footwear choice compared with alternative footwear.


Sports Biomechanics | 2016

Assessment of balance among adolescent track and field athletes.

Adam C. Knight; Megan E. Holmes; Harish Chander; Amari Kimble; Joshua Ty Stewart

Abstract Track and field events place different demands on athletes and may have an effect on balance. This study investigated the effects of event specialty, gender, and leg dominance on balance among adolescent track and field athletes. Forty healthy adolescent track and field athletes (male = 23, female = 17) categorised into three different groups (sprinter = 20, distance runners = 13, throwers = 7) had their single leg static balance measured with the eyes open and the eyes closed using an AMTI force platform. Dependent variables included average displacement (cm) of the centre of pressure (COP) in the anterior/posterior direction and medial/lateral directions, the average velocity of the COP (cm/s) and the 95% ellipse area (cm2). Variables were analysed using a 3 (event specialty) × 2 (gender) × 2 (leg) ANOVA with repeated measures on the leg variable (p < 0.05). There was a significant difference (p < 0.05) in the average displacement of the COP in the medial/lateral direction for both the eyes open and closed condition, with the non-dominant leg demonstrating greater displacement than the dominant leg. This might increase the risk of injury for the non-dominant leg, but additional data should be collected and analysed on both dynamic balance and performance.


Sports Biomechanics | 2018

External load training does not alter balance performance in well-trained women

Jeffrey D. Simpson; Brandon L. Miller; Eric K. O’Neal; Harish Chander; Adam C. Knight

Abstract This study investigated the influence of external load training (ELT) on static and dynamic balance. Nineteen females stratified into two groups (ELT = 9, control = 10) completed three testing sessions over 6 weeks. The ELT group wore weighted vests (WV) of ~8% body mass for 32 h/week during daily living and three training sessions/week for 3 weeks. Following completion of ELT, a 3 week detraining (DET) phase was completed. Bilateral and unilateral static balance were assessed with eyes open and closed. Dynamic balance was assessed using the star excursion balance test (SEBT). Static and dynamic balance variables were analysed using a 2 (group) x 3 (time) between participants repeated measures ANOVA (p < 0.05). Results revealed significant reductions in average centre of pressure (COP) velocity in the control group on the non-dominant limb with eyes closed, and significantly greater reach distances in the ELT group on the SEBT for the posteromedial and medial directions on the dominant limb (p < 0.05). These findings suggest the ELT group did not significantly improve their balance in comparison to the control group. However, future research should further examine this unique, supplemental training method and the impact on balance performance.


Physical Therapy in Sport | 2018

Individuals with chronic ankle instability exhibit dynamic postural stability deficits and altered unilateral landing biomechanics: A systematic review

Jeffrey D. Simpson; Ethan M. Stewart; David M. Macias; Harish Chander; Adam C. Knight

OBJECTIVE To evaluate the literature regarding unilateral landing biomechanics and dynamic postural stability in individuals with and without chronic ankle instability (CAI). METHODS Four online databases (PubMed, ScienceDirect, Scopus, and SportDiscus) were searched from the earliest records to 31 January 2018, as well as reference sections of related journal articles, to complete the systematic search. Studies investigating the influence of CAI on unilateral landing biomechanics and dynamic postural stability were systematically reviewed and evaluated. RESULTS Twenty articles met the criteria and were included in the systematic review. Individuals with CAI were found to have deficits in dynamic postural stability on the affected limb with medium to large effect sizes and altered lower extremity kinematics, most notably in the ankle and knee, with medium to large effect sizes. Additionally, greater loading rates and peak ground reaction forces, in addition to reductions in ankle muscle activity were also found in individuals with CAI during unilateral jump-landing tasks. CONCLUSIONS Individuals with CAI demonstrate dynamic postural stability deficits, lower extremity kinematic alterations, and reduced neuromuscular control during unilateral jump-landings. These are likely factors that contribute recurrent lateral ankle sprain injuries during dynamic activity in individuals with CAI.


Human Movement Science | 2018

Ground reaction forces during a drop vertical jump: Impact of external load training

Jeffrey D. Simpson; Brandon L. Miller; Eric O'Neal; Harish Chander; Adam C. Knight

External load training (ELT) is a supplemental training method used to potentially improve high intensity task performance. However, biomechanical parameters such as ground reaction forces (GRF), ground contact time, and time to peak GRF during a drop vertical jump (DVJ) following an ELT intervention have yet to be examined. Therefore, this study investigated the impact of ELT on certain biomechanical parameters of a DVJ task. Well-trained females stratified into two groups (ELT = 9, Control = 10) completed a DVJ from a 45.72 cm box onto a force platform at baseline, post-ELT, and post-detraining (DET). ELT consisted of wearing weight vests (WV) with 8% body mass for 32 h/week during daily living and 3 training sessions/week for 3 weeks. After ELT, a 3 week DET phase was completed. The control group replicated procedures without ELT intervention. The vertical, medial/lateral, and anterior/posterior components of the GRF were assessed during the initial contact, minimum force following initial contact, push-off, and second landing periods. Dependent variables were analyzed using a 2 (group) × 3 (time) mixed model ANOVA (p < .05). Significantly greater peak vertical GRF during the initial contact period was identified for the ELT group. Significant increases in the minimum vertical GRF following the initial contact period from baseline to post-ELT following the were observed for the ELT group, while significant increases in peak vertical GRF during the second landing period at post-ELT and post-DET in comparison to baseline was observed for both groups. The combination of greater vertical GRF during the initial contact period and the period following initial contact suggests that ELT may increase GRFs during a DVJ in comparison to routine training without a weighted vest.


Geriatrics | 2018

Falls in Geriatric Populations and Hydrotherapy as an Intervention: A Brief Review

Alana Turner; Harish Chander; Adam C. Knight

Falls and fall-related injuries are a serious health concern in geriatric populations, especially with age-related deficits in postural control and during postural control challenging dual-task situations. Balance training has been reported to be beneficial in reducing falls. However, some of these exercises have their inherent physical challenges that prevent the elderly population from performing them effectively. Other concomitant age-related illness in the elderly pose further challenges in performing these exercises. Hence, the topic of finding alternative types of balance training that are effective and are performed in a safer environment is constantly researched. One such alternative is hydrotherapy that focuses on balance and postural perturbation-based exercises in water-based environments such as aquatic swimming pools or in dedicated hydrotherapy pools. Hydrotherapy for geriatric populations has been reported to be beneficial in improving balance, motor and cognitive tasks with improved motivation and positive attitude towards exercises. Additionally, hydrotherapy also has properties of buoyancy, resistance and temperature, which benefit biomechanical and physiological wellness and offers a safe environment to perform balance training. Hydrotherapy balance training need to be scaled and prescribed according to individual needs and can serve as an effective training and rehabilitation protocol in reducing falls in geriatric population.


Footwear Science | 2018

Impact of occupational footwear during simulated workloads on energy expenditure

Ben M. Krings; Brandon L. Miller; Harish Chander; Hunter S. Waldman; Adam C. Knight; Matthew J. McAllister; Brent J. Fountain; JohnEric W. Smith

Limited research exists on the physiological demands of occupational footwear. Therefore, the purpose of this investigation was to examine the impact of tactical boots (TB) (0.5 kg) and steel-toed work boots (WB) (0.9 kg) on oxygen consumption (V̇O2) and cardiorespiratory responses during simulated walking protocols. Seventeen healthy male (age: 21.9 ± 2.0 years; height: 177.6 ± 4.8 cm; mass: 80.0 ± 9.4 kg) participants completed a total of four 20-min experimental walking trials: (1) WB horizontal protocol, (2) WB graded protocol, (3) TB horizontal protocol, and (4) TB graded protocol, following a randomized repeated measures design. On average, across each protocol, the larger mass of the WB increased absolute V̇O2 by 6.2% and 7.1% for the horizontal and graded protocols, respectively. The WB also caused a significant increase in absolute V̇O2 compared to TB during the horizontal protocol while walking at speeds of 4.0, 5.2, and 6.4 km/h (p < 0.05). No significant differences were observed for heart rate, breathing rate, or ratings of perceived exertion (p > 0.05). The results of this study indicate that wearing occupational footwear with a larger mass can significantly increase energy expenditure compared to footwear of lighter mass. However, energy expenditure increased without changes in physiological measures of energy expenditure. Footwear manufacturers may want to improve footwear design characteristics to maintain required safety guidelines while minimizing footwear mass.


Ergonomics | 2018

Impact of Military Type Footwear and Load Carrying Workload on Postural Stability

Harish Chander; Adam C. Knight; John C. Garner; Chip Wade; Daniel W. Carruth; Samuel J. Wilson; Jacob R. Gdovin; Caleb C. Williams

Abstract Postural stability has been shown to be impacted by footwear and task performed. This study analysed the impact of two military footwear, standard boot (STB) and minimalist boot (MTB) on postural stability, before (PRE) and after (POST) a load carriage task. Sixteen participants were tested for postural stability using sensory organisation and motor control tests on Neurocom Equitest™. Postural sway, equilibrium scores and postural latencies were analysed using a two-factor repeated measures ANOVA: boot type (STB-MTB) × time (PRE-POST) load carriage task. Significantly greater postural sway variables, lower balance scores and slower postural latencies were seen in STB and POST load carriage conditions (p < .05). The results suggest that MTB exhibited greater balance compared to STB in balance conditions that rely on somatosensory feedback and that balance is lowered after a load carriage task. Decrements in postural stability could be attributed to boot design characteristics and muscular exertion due to the load carriage task. Practitioner Summary: Maintaining optimal postural stability is crucial in military. Impact of military footwear types and load carriage task on postural stability are addressed. Findings provide footwear design and physical exertion implications on postural stability leading to potential interventions that reduce postural stability decrements; thereby, reducing potential falls and fall related injuries.

Collaboration


Dive into the Adam C. Knight's collaboration.

Top Co-Authors

Avatar

Harish Chander

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Garner

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hunter DeBusk

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Jeffrey D. Simpson

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Justin F. Shroyer

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandon L. Miller

Mississippi State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge