Jeffrey D. Simpson
Australian Astronomical Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey D. Simpson.
Monthly Notices of the Royal Astronomical Society | 2015
G. M. De Silva; Kenneth C. Freeman; Joss Bland-Hawthorn; Sarah L. Martell; E. Wylie De Boer; Martin Asplund; Stefan C. Keller; Sanjib Sharma; Daniel B. Zucker; Tomaž Zwitter; Borja Anguiano; Carlos Bacigalupo; D. Bayliss; M.A. Beavis; Maria Bergemann; Simon Campbell; R. Cannon; Daniela Carollo; Luca Casagrande; Andrew R. Casey; G. S. Da Costa; Valentina D'Orazi; Aaron Dotter; Ly Duong; Alexander Heger; Michael J. Ireland; Prajwal R. Kafle; Janez Kos; John C. Lattanzio; Geraint F. Lewis
The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ~ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ~ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
Monthly Notices of the Royal Astronomical Society | 2017
Sarah L. Martell; Sanjib Sharma; Sven Buder; Ly Duong; Katharine J. Schlesinger; Jeffrey D. Simpson; Karin Lind; Melissa Ness; Martin Asplund; Joss Bland-Hawthorn; Andrew R. Casey; G. M. De Silva; Kenneth C. Freeman; Janez Kos; Jane Lin; Daniel B. Zucker; Tomaž Zwitter; Borja Anguiano; Carlos Bacigalupo; Daniela Carollo; Luca Casagrande; G. S. Da Costa; Jonathan Horner; D. Huber; E. A. Hyde; Prajwal R. Kafle; Geraint F. Lewis; David M. Nataf; Colin A. Navin; D. Stello
The Galactic Archaeology with HERMES (GALAH) Survey is a massive observational project to trace the Milky Ways history of star formation, chemical enrichment, stellar migration and minor mergers. Using high-resolution (R
Monthly Notices of the Royal Astronomical Society | 2016
B. T. MacLean; Simon Campbell; G. M. De Silva; John C. Lattanzio; Valentina D'Orazi; Jeffrey D. Simpson; Y. Momany
\simeq
Journal of Astronomical Telescopes, Instruments, and Systems | 2015
Andrew Sheinis; Borja Anguiano Jimenez; Martin Asplund; Carlos Bacigalupo; Samuel C. Barden; Michael N. Birchall; Joss Bland-Hawthorn; Jurek Brzeski; Russell D. Cannon; Daniela Carollo; Scott W. Case; Andrew R. Casey; Vladimir Churilov; Warrick J. Couch; Robert Dean; Gayandhi De Silva; V. D’Orazi; Ly Duong; Tony Farrell; Kristin Fiegert; Kenneth C. Freeman; Gabriella Frost; Luke Gers; Michael Goodwin; Doug Gray; Andrew W. Green; Ron Heald; Jeroen Heijmans; Michael J. Ireland; Damien Jones
28,000) spectra taken with the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) instrument at the Anglo-Australian Telescope (AAT), GALAH will determine stellar parameters and abundances of up to 29 elements for up to one million stars. Selecting targets from a colour-unbiased catalogue built from 2MASS, APASS and UCAC4 data, we expect to observe dwarfs at 0.3 to 3 kpc and giants at 1 to 10 kpc. This enables a thorough local chemical inventory of the Galactic thin and thick disks, and also captures smaller samples of the bulge and halo. In this paper we present the plan, process and progress as of early 2016 for GALAH survey observations. In our first two years of survey observing we have accumulated the largest high-quality spectroscopic data set at this resolution, over 200,000 stars. We also present the first public GALAH data catalogue: stellar parameters (Teff, log(g), [Fe/H], [alpha/Fe]), radial velocity, distance modulus and reddening for 10680 observations of 9860 Tycho-2 stars that may be included in the first Gaia data release.
Monthly Notices of the Royal Astronomical Society | 2017
Janez Kos; Jane Lin; Tomaž Zwitter; Maruška Žerjal; Sanjib Sharma; Joss Bland-Hawthorn; Martin Asplund; Andrew R. Casey; Gayandhi De Silva; Kenneth C. Freeman; Sarah L. Martell; Jeffrey D. Simpson; Katharine J. Schlesinger; Daniel B. Zucker; Borja Anguiano; Carlos Bacigalupo; Timothy R. Bedding; Christopher H. Betters; Gary S. Da Costa; Ly Duong; E. A. Hyde; Michael J. Ireland; Prajwal R. Kafle; Sergio G. Leon-Saval; Geraint F. Lewis; Ulisse Munari; David M. Nataf; D. Stello; C. G. Tinney; Gregor Traven
Galactic Globular clusters (GCs) are now known to harbour multiple stellar populations, which are chemically distinct in many light element abundances. It is becoming increasingly clear that asymptotic giant branch (AGB) stars in GCs show different abundance distributions in light elements compared to those in the red giant branch (RGB) and other phases, skewing toward more primordial, field-star-like abundances, which we refer to as subpopulation one (SP1). As part of a larger program targeting giants in GCs, we obtained high-resolution spectra for a sample of 106 RGB and 15 AGB stars in Messier 4 (NGC 6121) using the 2dF+HERMES facility on the Anglo-Australian Telescope. In this Letter we report an extreme paucity of AGB stars with [Na/O] > -0.17 in M4, which contrasts with the RGB that has abundances up to [Na/O] =0.55. The AGB abundance distribution is consistent with all AGB stars being from SP1. This result appears to imply that all subpopulation two stars (SP2; Na-rich, O-poor) avoid the AGB phase. This is an unexpected result given M4s horizontal branch morphology -- it does not have an extended blue horizontal branch. This is the first abundance study to be performed utilising the HERMES spectrograph.
Monthly Notices of the Royal Astronomical Society | 2018
Sven Buder; Martin Asplund; Ly Duong; Janez Kos; Karin Lind; Melissa Ness; Sanjib Sharma; Joss Bland-Hawthorn; Andrew R. Casey; Gayandhi De Silva; V. D’Orazi; Kenneth C. Freeman; Geraint F. Lewis; Jane Lin; Sarah L. Martell; Katharine J. Schlesinger; Jeffrey D. Simpson; Daniel B. Zucker; Tomaž Zwitter; A. M. Amarsi; Borja Anguiano; Daniela Carollo; Luca Casagrande; Klemen Čotar; P. L. Cottrell; Gary S. Da Costa; Xudong D Gao; Michael R. Hayden; Jonathan Horner; Michael J. Ireland
Abstract. The High Efficiency and Resolution Multi Element Spectrograph, HERMES, is a facility-class optical spectrograph for the Anglo-Australian Telescope (AAT). It is designed primarily for Galactic Archaeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the Milky Way through a detailed chemical abundance study of one million stars. The spectrograph is based at the AAT and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses volume phase holographic gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 and 50,000 using a slit mask. The GALAH survey requires an SNR greater than 100 for a star brightness of V=14 in an exposure time of one hour. The total spectral coverage of the four channels is about 100 nm between 370 and 1000 nm for up to 392 simultaneous targets within the 2-degree field of view. HERMES has been commissioned over three runs, during bright time in October, November, and December 2013, in parallel with the beginning of the GALAH pilot survey, which started in November 2013. We present the first-light results from the commissioning run and the beginning of the GALAH survey, including performance results such as throughput and resolution, as well as instrument reliability.
Monthly Notices of the Royal Astronomical Society | 2012
Jeffrey D. Simpson; P. L. Cottrell; C. C. Worley
We present the data reduction procedures being used by the GALactic Archeology with Hermes (GALAH) survey, carried out with the HERMES fibre-fed, multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. GALAH is a unique survey, targeting 1 million stars brighter than magnitude V = 14 at a resolution of 28 000 with a goal to measure the abundances of 29 elements. Such a large number of high-resolution spectra necessitate the development of a reduction pipeline optimized for speed, accuracy, and consistency.We outline the design and structure of the IRAF-based reduction pipeline that we developed, specifically for GALAH, to produce fully calibrated spectra aimed for subsequent stellar atmospheric parameter estimation. The pipeline takes advantage of existing IRAF routines and other readily available software so as to be simple to maintain, testable, and reliable. A radial velocity and stellar atmospheric parameter estimator code is also presented, which is used for further data analysis and yields a useful verification of the reduction quality. We have used this estimator to quantify the data quality of GALAH for fibre cross-talk level (≲0.5 per cent) and scattered light (~5 counts in a typical 20 min exposure), resolution across the field, sky spectrum properties, wavelength solution reliability (better than 1 kms-1 accuracy), and radial velocity precision. (Less)
Monthly Notices of the Royal Astronomical Society | 2017
Jeffrey D. Simpson; Sarah L. Martell; Colin A. Navin
The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of theMilkyWay, designed to deliver complementary chemical information to a large number of stars covered by the Gaia mission. We present the GALAH second public data release (GALAH DR2) containing 342 682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction, and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multistep approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels (T eff , logg, [Fe/H], [X/Fe], v mic , vsin i, AK S ) for a representative training set of stars. This information is then propagated to the whole sample with the data-driven method of The Cannon. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D MARCS stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence to our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from Gaia will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.
Monthly Notices of the Royal Astronomical Society | 2013
Jeffrey D. Simpson; P. L. Cottrell
We have determined stellar parameters and abundances for 221 giant branch stars in the globular cluster ω Centauri. A combination of photometry and lower resolution spectroscopy was used to determine temperature, gravity, metallicity, [C/Fe], [N/Fe] and [Ba/Fe]. These abundances agree well with those found by previous researchers and expand the analysed sample of the cluster. k-means clustering analysis was used to group the stars into four homogeneous groups based upon these abundances. These stars show the expected anticorrelation between [C/Fe] and [N/Fe]. We investigated the distribution of CN-weak/CN-strong stars on the colour–magnitude diagram. Asymptotic giant branch stars, which were selected from their position on the colour–magnitude diagram, were almost all CN weak. This is in contrast to the red giant branch where a large minority were CN strong. The results were also compared with cluster formation and evolution models. Overall, this study shows that statistically significant elemental and evolutionary conclusions can be obtained from lower resolution spectroscopy.
Monthly Notices of the Royal Astronomical Society | 2018
Alice C. Quillen; Gayandhi De Silva; Sanjib Sharma; Michael R. Hayden; Kenneth C. Freeman; Joss Bland-Hawthorn; Maruša Žerjal; Martin Asplund; Sven Buder; V. D’Orazi; Ly Duong; Janez Kos; Jane Lin; Karin Lind; Sarah L. Martell; Katharine J. Schlesinger; Jeffrey D. Simpson; Daniel B. Zucker; T. Zwitter; Borja Anguiano; Daniela Carollo; Luca Casagrande; Klemen Čotar; P. L. Cottrell; Michael J. Ireland; Prajwal R. Kafle; Jonathan Horner; Geraint F. Lewis; David M. Nataf; Yuan-Sen Ting
We present an analysis of the multiple stellar populations of the globular cluster NGC 1851. We used lower resolution spectra of giant stars to measure CN, CH, and calcium H & K spectral indices, and determine elemental abundances for carbon and nitrogen. The CN and CH indices were used to confirm that there are four populations of stars in the cluster. The primordial population of stars, with the lowest CN, was found to be generally chemically distinct in elemental abundances from the second generation populations. As expected, [N/Fe] increases with increasing CN strength, but the only other element that correlated with CN was barium. The two largest populations of stars were found to have the same rate of carbon astration as the stars ascend the giant branch. We were also able to confirm that four previously identified extratidal stars are chemically associated with the cluster. This work shows the benefit of considering the chemistry of globular clusters with both high- and low-resolution spectra.