Adam C. Miller
University of Oregon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adam C. Miller.
Nature Methods | 2015
Arish N. Shah; Crystal F. Davey; Alex C Whitebirch; Adam C. Miller; Cecilia B. Moens
Identifying genes involved in biological processes is critical for understanding the molecular building blocks of life. We used engineered CRISPR (clustered regularly interspaced short palindromic repeats) to efficiently mutate specific loci in zebrafish (Danio rerio) and screen for genes involved in vertebrate biological processes. We found that increasing CRISPR efficiency by injecting optimized amounts of Cas9-encoding mRNA and multiplexing single guide RNAs (sgRNAs) allowed for phenocopy of known mutants across many phenotypes in embryos. We performed a proof-of-concept screen in which we used intersecting, multiplexed pool injections to examine 48 loci and identified two new genes involved in electrical-synapse formation. By deep sequencing target loci, we found that 90% of the genes were effectively screened. We conclude that CRISPR can be used as a powerful reverse genetic screening strategy in vivo in a vertebrate system.
The Journal of Neuroscience | 2003
Hatim A. Zariwala; Adam C. Miller; Serge Faumont; Shawn R. Lockery
The sensorimotor transformation underlying Caenorhabditis elegans chemotaxis has been difficult to measure directly under normal assay conditions. Thus, key features of this transformation remain obscure, such as its time course and dependence on stimulus amplitude. Here, we present a comprehensive characterization of the transformation as obtained by inducing stepwise temporal changes in attractant concentration within the substrate as the worm crawls across it. We found that the step response is complex, with multiple phases and a nonlinear dependence on the sign and amplitude of the stimulus. Nevertheless, the step response could be reduced to a simple kinetic model that predicted the results of chemotaxis assays. Analysis of the model showed that chemotaxis results from the combined effects of approach and avoidance responses to concentration increases and decreases, respectively. Surprisingly, ablation of the ASE chemosensory neurons, known to be necessary for chemotaxis in chemical gradient assays, eliminated avoidance responses but left approach responses intact. These results indicate that the transformation can be dissected into components to which identified neurons can be assigned.
Current Biology | 2009
Adam C. Miller; Eric L. Lyons; Tory G. Herman
Lateral inhibition mediated by Delta/Notch (Dl/N) signaling is used throughout development to limit the number of initially equivalent cells that adopt a particular fate. Although adjacent cells express both Dl ligand and N receptor, signaling between them ultimately occurs in only one direction. Classically, this has been explained entirely by feedback: activated N can downregulate Dl, amplifying even slight asymmetries in the Dl or N activities of adjacent cells. Here, however, we present an example of lateral inhibition in which unidirectional signaling depends instead on Dls ability to inhibit N within the same cell, a phenomenon known as cis-inhibition. By genetically manipulating individual R1/R6/R7 photoreceptor precursors in the Drosophila eye, we show that loss of Dl-mediated cis-inhibition reverses the direction of lateral signaling. Based on our finding that Dl in R1/R6s requires endocytosis to trans-activate but not to cis-inhibit N, we reexamine previously published data from other examples of lateral inhibition. We conclude that cis-inhibition generally influences the direction of Dl/N signaling and should therefore be included in standard models of lateral inhibition.
Genome Research | 2013
Adam C. Miller; Nikolaus D. Obholzer; Arish N. Shah; Sean G. Megason; Cecilia B. Moens
Forward genetic screens have elucidated molecular pathways required for innumerable aspects of life; however, identifying the causal mutations from such screens has long been the bottleneck in the process, particularly in vertebrates. We have developed an RNA-seq-based approach that identifies both the region of the genome linked to a mutation and candidate lesions that may be causal for the phenotype of interest. We show that our method successfully identifies zebrafish mutations that cause nonsense or missense changes to codons, alter transcript splicing, or alter gene expression levels. Furthermore, we develop an easily accessible bioinformatics pipeline allowing for implementation of all steps of the method. Overall, we show that RNA-seq is a fast, reliable, and cost-effective method to map and identify mutations that will greatly facilitate the power of forward genetics in vertebrate models.
Development | 2008
Adam C. Miller; Heather Seymour; Christopher King; Tory G. Herman
Recent evidence suggests that stochasticism is important for generating cell type diversity. We have identified a novel stochastic fate choice as part of the mechanism by which Delta/Notch (Dl/N) signaling specifies R7 fate in the Drosophila eye. The equivalence of R1/R6/R7 precursors is normally broken by the activation of N, which specifies the R7 fate. The orphan nuclear hormone receptor Seven-up (Svp) is necessary and sufficient to direct R1/R6/R7 precursors to adopt the R1/R6 fate. A simple model, therefore, is that N represses Svp, which otherwise prevents adoption of the R7 fate. However, we have found that R1/R6s lacking svp stochastically adopt either the R7 or the R8 fate with equal likelihood. We show that N specifies the R7 fate by a novel branched pathway: N represses Svp expression, thereby exposing an underlying stochastic choice between the R7 and R8 fates, and then tips this choice towards the R7 fate.
Current Biology | 2015
Adam C. Miller; Lisa H. Voelker; Arish N. Shah; Cecilia B. Moens
BACKGROUND Neural networks and their function are defined by synapses, which are adhesions specialized for intercellular communication that can be either chemical or electrical. At chemical synapses, transmission between neurons is mediated by neurotransmitters, whereas at electrical synapses, direct ionic and metabolic coupling occur via gap junctions between neurons. The molecular pathways required for electrical synaptogenesis are not well understood, and whether they share mechanisms of formation with chemical synapses is not clear. RESULTS Here, using a forward genetic screen in zebrafish, we find that the autism-associated gene neurobeachin (nbea), which encodes a BEACH-domain-containing protein implicated in endomembrane trafficking, is required for both electrical and chemical synapse formation. Additionally, we find that nbea is dispensable for axonal formation and early dendritic outgrowth but is required to maintain dendritic complexity. These synaptic and morphological defects correlate with deficiencies in behavioral performance. Using chimeric animals in which individually identifiable neurons are either mutant or wild-type, we find that Nbea is necessary and sufficient autonomously in the postsynaptic neuron for both synapse formation and dendritic arborization. CONCLUSIONS Our data identify a surprising link between electrical and chemical synapse formation and show that Nbea acts as a critical regulator in the postsynaptic neuron for the coordination of dendritic morphology with synaptogenesis.
Methods in Cell Biology | 2016
Arish N. Shah; Cecilia B. Moens; Adam C. Miller
In the postgenomic era, the ability to quickly, efficiently, and inexpensively assign function to the zebrafish proteome is critical. Clustered regularly interspaced short palindromic repeats (CRISPRs) have revolutionized the ability to perform reverse genetics because of its simplicity and broad applicability. The CRISPR system is composed of an engineered, gene-specific single guide RNA (sgRNA) and a Cas9 enzyme that causes double-stranded breaks in DNA at the targeted site. This simple, two-part system, when injected into one-cell stage zebrafish embryos, efficiently mutates target loci at a frequency such that injected embryos phenocopy known mutant phenotypes. This property allows for CRISPR-based F0 screening in zebrafish, which provides a means to screen through a large number of candidate genes for their role in a phenotype of interest. While there are important considerations for any successful genetic screen, CRISPR screening has significant benefits over conventional methods and can be accomplished in any lab with modest molecular biology experience.
eLife | 2017
Adam C. Miller; Alex C Whitebirch; Arish N. Shah; Kurt C. Marsden; Michael Granato; John O'Brien; Cecilia B. Moens
Neural network function is based upon the patterns and types of connections made between neurons. Neuronal synapses are adhesions specialized for communication and they come in two types, chemical and electrical. Communication at chemical synapses occurs via neurotransmitter release whereas electrical synapses utilize gap junctions for direct ionic and metabolic coupling. Electrical synapses are often viewed as symmetrical structures, with the same components making both sides of the gap junction. By contrast, we show that a broad set of electrical synapses in zebrafish, Danio rerio, require two gap-junction-forming Connexins for formation and function. We find that one Connexin functions presynaptically while the other functions postsynaptically in forming the channels. We also show that these synapses are required for the speed and coordination of escape responses. Our data identify a genetic basis for molecular asymmetry at vertebrate electrical synapses and show they are required for appropriate behavioral performance. DOI: http://dx.doi.org/10.7554/eLife.25364.001
Developmental Neurobiology | 2017
Adam C. Miller; Alberto E. Pereda
Gap junctions underlie electrical synaptic transmission between neurons. Generally perceived as simple intercellular channels, “electrical synapses” have demonstrated to be more functionally sophisticated and structurally complex than initially anticipated. Electrical synapses represent an assembly of multiple molecules, consisting of channels, adhesion complexes, scaffolds, regulatory machinery, and trafficking proteins, all required for their proper function and plasticity. Additionally, while electrical synapses are often viewed as strictly symmetric structures, emerging evidence has shown that some components forming electrical synapses can be differentially distributed at each side of the junction. We propose that the molecular complexity and asymmetric distribution of proteins at the electrical synapse provides rich potential for functional diversity.
Genome Research | 2002
Joanna L. Mountain; Alec Knight; Matthew Jobin; Christopher R. Gignoux; Adam C. Miller; Alice A. Lin; Peter A. Underhill