Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto E. Pereda is active.

Publication


Featured researches published by Alberto E. Pereda.


Biochimica et Biophysica Acta | 2013

Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity

Alberto E. Pereda; Sebastian Curti; Gregory Hoge; Roger Cachope; Carmen E. Flores; John E. Rash

The term synapse applies to cellular specializations that articulate the processing of information within neural circuits by providing a mechanism for the transfer of information between two different neurons. There are two main modalities of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding of the properties and modifiability of chemical transmission, less is still known regarding the plastic properties of electrical synapses, whose structural correlate is the gap junction. A wealth of data indicates that, rather than passive intercellular channels, electrical synapses are more dynamic and modifiable than was generally perceived. This article will discuss the factors determining the strength of electrical transmission and review current evidence demonstrating its dynamic properties. Like their chemical counterparts, electrical synapses can also be plastic and modifiable. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.


Neuron | 2007

Potentiation of Electrical and Chemical Synaptic Transmission Mediated by Endocannabinoids

Roger Cachope; Ken Mackie; Antoine Triller; John O'Brien; Alberto E. Pereda

Endocannabinoids are well established as inhibitors of chemical synaptic transmission via presynaptic activation of the cannabinoid type 1 receptor (CB1R). Contrasting this notion, we show that dendritic release of endocannabinoids mediates potentiation of synaptic transmission at mixed (electrical and chemical) synaptic contacts on the goldfish Mauthner cell. Remarkably, the observed enhancement was not restricted to the glutamatergic component of the synaptic response but also included a parallel increase in electrical transmission. This effect involved the activation of CB1 receptors and was indirectly mediated via the release of dopamine from nearby varicosities, which in turn led to potentiation of the synaptic response via a cAMP-dependent protein kinase-mediated postsynaptic mechanism. Thus, endocannabinoid release can potentiate synaptic transmission, and its functional roles include the regulation of gap junction-mediated electrical synapses. Similar interactions between endocannabinoid and dopaminergic systems may be widespread and potentially relevant for the motor and rewarding effects of cannabis derivatives.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Chemical synaptic activity modulates nearby electrical synapses

M. L. Smith; Alberto E. Pereda

Most electrically coupled neurons also receive numerous chemical synaptic inputs. Whereas chemical synapses are known to be highly dynamic, gap junction-mediated electrical transmission often is considered to be less modifiable and variable. By using simultaneous pre- and postsynaptic recordings, we demonstrate at single mixed electrical and chemical synapses that fast chemical transmission interacts with gap junctions within the same ending to regulate their conductance. Such localized interaction is activity-dependent and could account for the large variation in strength of electrical coupling at auditory afferent synapses terminating on the Mauthner cell lateral dendrite. Thus, interactions between chemical and electrical synapses can regulate the degree of electrical coupling, making it possible for a given neuron to independently modify coupling at different electrical synapses with its neighbors.


The Journal of Neuroscience | 2012

Synergy between Electrical Coupling and Membrane Properties Promotes Strong Synchronization of Neurons of the Mesencephalic Trigeminal Nucleus

Sebastian Curti; Gregory Hoge; J.I. Nagy; Alberto E. Pereda

Electrical synapses are known to form networks of extensively coupled neurons in various regions of the mammalian brain. The mesencephalic trigeminal (MesV) nucleus, formed by the somata of primary afferents originating in jaw-closing muscles, constitutes one of the first examples supporting the presence of electrical synapses in the mammalian CNS; however, the properties, functional organization, and developmental emergence of electrical coupling within this structure remain unknown. By combining electrophysiological, tracer coupling, and immunochemical analysis in brain slices of rat and mouse, we found that coupling is mostly restricted to pairs or small clusters of MesV neurons. Electrical transmission is supported by connexin36 (Cx36)-containing gap junctions at somato-somatic contacts where only a small proportion of channels appear to be open (∼0.1%). In marked contrast with most brain structures, coupling among MesV neurons increases with age, such that it is absent during early development and appears at postnatal day 8. Interestingly, the development of coupling parallels the development of intrinsic membrane properties responsible for repetitive firing in these neurons. We found that, acting together, sodium and potassium conductances enhance the transfer of signals with high-frequency content via electrical synapses, leading to strong spiking synchronization of the coupled neurons. Together, our data indicate that coupling in the MesV nucleus is restricted to mostly pairs of somata between which electrical transmission is supported by a surprisingly small fraction of the channels estimated to be present, and that coupling synergically interacts with specific membrane conductances to promote synchronization of these neurons.


Journal of Neurophysiology | 2011

The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous

Gregory Hoge; Kimberly G. V. Davidson; Thomas Yasumura; Pablo E. Castillo; John E. Rash; Alberto E. Pereda

Gap junctions constitute the only form of synaptic communication between neurons in the inferior olive (IO), which gives rise to the climbing fibers innervating the cerebellar cortex. Although its exact functional role remains undetermined, electrical coupling was shown to be necessary for the transient formation of functional compartments of IO neurons and to underlie the precise timing of climbing fibers required for cerebellar learning. So far, most functional considerations assume the existence of a network of permanently and homogeneously coupled IO neurons. Contrasting this notion, our results indicate that coupling within the IO is highly variable. By combining tracer-coupling analysis and paired electrophysiological recordings, we found that individual IO neurons could be coupled to a highly variable number of neighboring neurons. Furthermore, a given neuron could be coupled at remarkably different strengths with each of its partners. Freeze-fracture analysis of IO glomeruli revealed the close proximity of glutamatergic postsynaptic densities to connexin 36-containing gap junctions, at distances comparable to separations between chemical transmitting domains and gap junctions in goldfish mixed contacts, where electrical coupling was shown to be modulated by the activity of glutamatergic synapses. On the basis of structural and molecular similarities with goldfish mixed synapses, we speculate that, rather than being hardwired, variations in coupling could result from glomerulus-specific long-term modulation of gap junctions. This striking heterogeneity of coupling might act to finely influence the synchronization of IO neurons, adding an unexpected degree of complexity to olivary networks.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Interaction between connexin35 and zonula occludens-1 and its potential role in the regulation of electrical synapses

Carmen E. Flores; Xinbo Li; J.I. Nagy; Alberto E. Pereda

Although regulation of chemical transmission is known to involve the interaction of receptors with scaffold proteins, little is known about the existence of protein–protein interactions in regulating gap junction-mediated electrical synapses. The scaffold protein zonula-occludens-1 (ZO-1), a member of the MAGUK family of proteins, was reported to interact with several connexins (Cxs). We show here that ZO-1 extensively colocalizes with Cx35 at identifiable “mixed” (electrical and chemical) contacts on goldfish Mauthner cells, a model synapse for the study of vertebrate electrical transmission where it is possible to correlate physiological properties with molecular composition. Further, our analysis indicates that these proteins directly interact at goldfish electrical synapses. In contrast to Cx43, which interacts with ZO-1 via the PDZ2 domain, Cx35 interacts with ZO-1 via the PDZ1 domain, and this association is of lower affinity. The properties of the ZO-1/Cx35 association suggest the existence of a more dynamic relation between these two proteins, possibly including a role of ZO-1 in regulating gap junctional conductance at these highly modifiable electrical synapses. The interaction of ZO-1 with conserved regions of the C termini of Cx35/Cx36 orthologs may have a common function at electrical synapses of mammals and other vertebrates.


The Journal of Neuroscience | 2004

Voltage-Dependent Enhancement of Electrical Coupling by a Subthreshold Sodium Current

Sebastián Curti; Alberto E. Pereda

Voltage-dependent changes in electrical coupling are often attributed to a direct effect on the properties of gap junction channels. Identifiable auditory afferents terminate as mixed (electrical and chemical) synapses on the distal portion of the lateral dendrite of the goldfish Mauthner cells, a pair of large reticulospinal neurons involved in the organization of sensory-evoked escape responses. At these afferents, the amplitude of the coupling potential produced by the retrograde spread of signals from the postsynaptic Mauthner cell is dramatically enhanced by depolarization of the presynaptic terminal. We demonstrate here that this voltage-dependent enhancement of electrical coupling does not represent a property of the junctions themselves but the activation of a subthreshold sodium current present at presynaptic terminals that acts to amplify the synaptic response. We also provide evidence that this amplification operates under physiological conditions, enhancing synaptic communication from the Mauthner cells to the auditory afferents where electrical and geometrical properties of the coupled cells are unfavorable for retrograde transmission. Retrograde electrical communication at these afferents may play an important functional role by promoting cooperativity between afferents and enhancing transmitter release. Thus, the efficacy of an electrical synapse can be dynamically modulated in a voltage-dependent manner by properties of the nonjunctional membrane. Finally, asymmetric amplification of electrical coupling by intrinsic membrane properties, as at the synapses between auditory afferents and the Mauthner cell, may ensure efficient communication between neuronal processes of dissimilar size and shape, promoting neuronal synchronization.


Neuron | 2013

Molecular and Functional Asymmetry at a Vertebrate Electrical Synapse

John E. Rash; Sebastian Curti; Kimberly G. Vanderpool; Naomi Kamasawa; Srikant Nannapaneni; Nicolás Palacios-Prado; Carmen E. Flores; Thomas Yasumura; John O’Brien; B.D. Lynn; Feliksas F. Bukauskas; J.I. Nagy; Alberto E. Pereda

Electrical synapses are abundant in the vertebrate brain, but their functional and molecular complexities are still poorly understood. We report here that electrical synapses between auditory afferents and goldfish Mauthner cells are constructed by apposition of hemichannels formed by two homologs of mammalian connexin 36 (Cx36) and that, while Cx35 is restricted to presynaptic hemiplaques, Cx34.7 is restricted to postsynaptic hemiplaques, forming heterotypic junctions. This molecular asymmetry is associated with rectification of electrical transmission that may act to promote cooperativity between auditory afferents. Our data suggest that, in similarity to pre- and postsynaptic sites at chemical synapses, one side in electrical synapses should not necessarily be considered the mirror image of the other. While asymmetry based on the presence of two Cx36 homologs is restricted to teleost fish, it might also be based on differences in posttranslational modifications of individual connexins or in the complement of gap junction-associated proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Trafficking of gap junction channels at a vertebrate electrical synapse in vivo

Carmen E. Flores; Srikant Nannapaneni; Kimberly G. V. Davidson; Thomas Yasumura; John E. Rash; Alberto E. Pereda

Trafficking and turnover of transmitter receptors required to maintain and modify the strength of chemical synapses have been characterized extensively. In contrast, little is known regarding trafficking of gap junction components at electrical synapses. By combining ultrastructural and in vivo physiological analysis at identified mixed (electrical and chemical) synapses on the goldfish Mauthner cell, we show here that gap junction hemichannels are added at the edges of GJ plaques where they dock with hemichannels in the apposed membrane to form cell–cell channels and, simultaneously, that intact junctional regions are removed from centers of these plaques into either presynaptic axon or postsynaptic dendrite. Moreover, electrical coupling is readily modified by intradendritic application of peptides that interfere with endocytosis or exocytosis, suggesting that the strength of electrical synapses at these terminals is sustained, at least in part, by fast (in minutes) turnover of gap junction channels. A peptide corresponding to a region of the carboxy terminus that is conserved in Cx36 and its two teleost homologs appears to interfere with formation of new gap junction channels, presumably by reducing insertion of hemichannels on the dendritic side. Thus, our data indicate that electrical synapses are dynamic structures and that their channels are turned over actively, suggesting that regulated trafficking of connexons may contribute to the modification of gap junctional conductance.


The Journal of Neuroscience | 2013

Intracellular Magnesium-Dependent Modulation of Gap Junction Channels Formed by Neuronal Connexin36

Nicolás Palacios-Prado; Gregory Hoge; Alina Marandykina; Lina Rimkute; Sandrine Chapuis; Nerijus Paulauskas; Vytenis A. Skeberdis; John O'Brien; Alberto E. Pereda; Feliksas F. Bukauskas

Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg2+]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg2+]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg2+]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg2+]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg2+]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg2+-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg2+]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg2+]i, but was not increased by lowering [Mg2+]i; single-channel conductance did not change. We showed that [Mg2+]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg2+]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg2+]i, are modified.

Collaboration


Dive into the Alberto E. Pereda's collaboration.

Top Co-Authors

Avatar

John E. Rash

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

J.I. Nagy

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Sebastian Curti

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Thomas Yasumura

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Carmen E. Flores

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Gregory Hoge

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger Cachope

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge