Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam D. McIntyre is active.

Publication


Featured researches published by Adam D. McIntyre.


WOS | 2013

Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia

Christopher T. Johansen; Jian Wang; Matthew B. Lanktree; Henian Cao; Adam D. McIntyre; Matthew R. Ban; Rebecca A. Martins; Brooke A. Kennedy; Reina G. Hassell; Maartje E. Visser; Stephen M. Schwartz; Benjamin F. Voight; Roberto Elosua; Veikko Salomaa; Christopher J. O'Donnell; Geesje M. Dallinga-Thie; Sonia S. Anand; Salim Yusuf; Murray W. Huff; Sekar Kathiresan; Robert A. Hegele

Genome-wide association studies (GWAS) have identified multiple loci associated with plasma lipid concentrations. Common variants at these loci together explain <10% of variation in each lipid trait. Rare variants with large individual effects may also contribute to the heritability of lipid traits; however, the extent to which rare variants affect lipid phenotypes remains to be determined. Here we show an accumulation of rare variants, or a mutation skew, in GWAS-identified genes in individuals with hypertriglyceridemia (HTG). Through GWAS, we identified common variants in APOA5, GCKR, LPL and APOB associated with HTG. Resequencing of these genes revealed a significant burden of 154 rare missense or nonsense variants in 438 individuals with HTG, compared to 53 variants in 327 controls (P = 6.2 × 10−8), corresponding to a carrier frequency of 28.1% of affected individuals and 15.3% of controls (P = 2.6 × 10−5). Considering rare variants in these genes incrementally increased the proportion of genetic variation contributing to HTG.


Journal of Clinical Investigation | 2010

Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function

Sebastian Zeissig; Stephanie K. Dougan; Duarte C. Barral; Yvonne Junker; Zhangguo Chen; Arthur Kaser; Madelyn M. Ho; Hannah Mandel; Adam D. McIntyre; Susan M. Kennedy; Gavin F. Painter; Natacha Veerapen; Gurdyal S. Besra; Vincenzo Cerundolo; Simon Yue; Sarah Beladi; Samuel M. Behar; Xiuxu Chen; Jenny E. Gumperz; Karine Breckpot; Anna Raper; Amanda Baer; Mark A. Exley; Robert A. Hegele; Marina Cuchel; Daniel J. Rader; Nicholas O. Davidson; Richard S. Blumberg

Abetalipoproteinemia (ABL) is a rare Mendelian disorder of lipid metabolism due to genetic deficiency in microsomal triglyceride transfer protein (MTP). It is associated with defects in MTP-mediated lipid transfer onto apolipoprotein B (APOB) and impaired secretion of APOB-containing lipoproteins. Recently, MTP was shown to regulate the CD1 family of lipid antigen-presenting molecules, but little is known about immune function in ABL patients. Here, we have shown that ABL is characterized by immune defects affecting presentation of self and microbial lipid antigens by group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 molecules. In dendritic cells isolated from ABL patients, MTP deficiency was associated with increased proteasomal degradation of group 1 CD1 molecules. Although CD1d escaped degradation, it was unable to load antigens and exhibited functional defects similar to those affecting the group 1 CD1 molecules. The reduction in CD1 function resulted in impaired activation of CD1-restricted T and invariant natural killer T (iNKT) cells and reduced numbers and phenotypic alterations of iNKT cells consistent with central and peripheral CD1 defects in vivo. These data highlight MTP as a unique regulator of human metabolic and immune pathways and reveal that ABL is not only a disorder of lipid metabolism but also an immune disease involving CD1.


Journal of Lipid Research | 2014

LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias

Christopher T. Johansen; Joseph B. Dubé; Melissa N. Loyzer; Austin MacDonald; David E. Carter; Adam D. McIntyre; Henian Cao; Jian Wang; John F. Robinson; Robert A. Hegele

We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

An Increased Burden of Common and Rare Lipid-Associated Risk Alleles Contributes to the Phenotypic Spectrum of Hypertriglyceridemia

Christopher T. Johansen; Jian Wang; Matthew B. Lanktree; Adam D. McIntyre; Matthew R. Ban; Rebecca A. Martins; Brooke A. Kennedy; Reina G. Hassell; Maartje E. Visser; Stephen M. Schwartz; Benjamin F. Voight; Roberto Elosua; Veikko Salomaa; Christopher J. O'Donnell; Geesje M. Dallinga-Thie; Sonia S. Anand; Salim Yusuf; Murray W. Huff; Sekar Kathiresan; Henian Cao; Robert A. Hegele

Objective—Earlier studies have suggested that a common genetic architecture underlies the clinically heterogeneous polygenic Fredrickson hyperlipoproteinemia (HLP) phenotypes defined by hypertriglyceridemia (HTG). Here, we comprehensively analyzed 504 HLP-HTG patients and 1213 normotriglyceridemic controls and confirmed that a spectrum of common and rare lipid-associated variants underlies this heterogeneity. Methods and Results—First, we demonstrated that genetic determinants of plasma lipids and lipoproteins, including common variants associated with plasma triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) from the Global Lipids Genetics Consortium were associated with multiple HLP-HTG phenotypes. Second, we demonstrated that weighted risk scores composed of common TG-associated variants were distinctly increased across all HLP-HTG phenotypes compared with controls; weighted HDL-C and LDL-C risk scores were also increased, although to a less pronounced degree with some HLP-HTG phenotypes. Interestingly, decomposition of HDL-C and LDL-C risk scores revealed that pleiotropic variants (those jointly associated with TG) accounted for the greatest difference in HDL-C and LDL-C risk scores. The APOE E2/E2 genotype was significantly overrepresented in HLP type 3 versus other phenotypes. Finally, rare variants in 4 genes accumulated equally across HLP-HTG phenotypes. Conclusion—HTG susceptibility and phenotypic heterogeneity are both influenced by accumulation of common and rare TG-associated variants.


Circulation-cardiovascular Genetics | 2012

Excess of Rare Variants in Non–Genome-Wide Association Study Candidate Genes in Patients With Hypertriglyceridemia

Christopher T. Johansen; Jian Wang; Adam D. McIntyre; Rebecca A. Martins; Matthew R. Ban; Matthew B. Lanktree; Murray W. Huff; Miklós Péterfy; Margarete Mehrabian; Aldons J. Lusis; Sekar Kathiresan; Sonia S. Anand; Salim Yusuf; Ann-Hwee Lee; Laurie H. Glimcher; Henian Cao; Robert A. Hegele

Background— Rare variant accumulation studies can implicate genes in disease susceptibility when a significant burden is observed in patients versus control subjects. Such analyses might be particularly useful for candidate genes that are selected based on experiments other than genome-wide association studies (GWAS). We sought to determine whether rare variants in non-GWAS candidate genes identified from mouse models and human mendelian syndromes of hypertriglyceridemia (HTG) accumulate in patients with polygenic adult-onset HTG. Methods and Results— We resequenced protein coding regions of 3 genes with established roles (APOC2, GPIHBP1, LMF1) and 2 genes recently implicated (CREB3L3 and ZHX3) in TG metabolism. We identified 41 distinct heterozygous rare variants, including 29 singleton variants, in the combined sample; in total, we observed 47 rare variants in 413 HTG patients versus 16 in 324 control subjects (odds ratio=2.3; P=0.0050). Post hoc assessment of genetic burden in individual genes using 3 different tests suggested that the genetic burden was most prominent in the established genes LMF1 and APOC2, and also in the recently identified CREB3L3 gene. Conclusions— These extensive resequencing studies show a significant accumulation of rare genetic variants in non-GWAS candidate genes among patients with polygenic HTG, and indicate the importance of testing specific hypotheses in large-scale resequencing studies.


Current Opinion in Lipidology | 2015

Targeted next-generation sequencing in monogenic dyslipidemias.

Robert A. Hegele; Matthew R. Ban; Henian Cao; Adam D. McIntyre; John F. Robinson; Jian Wang

Purpose of review To evaluate the potential clinical translation of high-throughput next-generation sequencing (NGS) methods in diagnosis and management of dyslipidemia. Recent findings Recent NGS experiments indicate that most causative genes for monogenic dyslipidemias are already known. Thus, monogenic dyslipidemias can now be diagnosed using targeted NGS. Targeting of dyslipidemia genes can be achieved by either: designing custom reagents for a dyslipidemia-specific NGS panel; or performing genome-wide NGS and focusing on genes of interest. Advantages of the former approach are lower cost and limited potential to detect incidental pathogenic variants unrelated to dyslipidemia. However, the latter approach is more flexible because masking criteria can be altered as knowledge advances, with no need for re-design of reagents or follow-up sequencing runs. Also, the cost of genome-wide analysis is decreasing and ethical concerns can likely be mitigated. DNA-based diagnosis is already part of the clinical diagnostic algorithms for familial hypercholesterolemia. Furthermore, DNA-based diagnosis is supplanting traditional biochemical methods to diagnose chylomicronemia caused by deficiency of lipoprotein lipase or its co-factors. Summary The increasing availability and decreasing cost of clinical NGS for dyslipidemia means that its potential benefits can now be evaluated on a larger scale.


American Journal of Human Genetics | 2012

Transient Infantile Hypertriglyceridemia, Fatty Liver, and Hepatic Fibrosis Caused by Mutated GPD1, Encoding Glycerol-3-Phosphate Dehydrogenase 1

Lina Basel-Vanagaite; Noam Zevit; Adi Har Zahav; Liang Guo; Saj Parathath; Metsada Pasmanik-Chor; Adam D. McIntyre; Jian Wang; Adi Albin-Kaplanski; Corina Hartman; Daphna Marom; Avraham Zeharia; Abir Badir; Oded Shoerman; Amos J. Simon; Gideon Rechavi; Mordechai Shohat; Robert A. Hegele; Edward A. Fisher; Raanan Shamir

The molecular basis for primary hereditary hypertriglyceridemia has been identified in fewer than 5% of cases. Investigation of monogenic dyslipidemias has the potential to expose key metabolic pathways. We describe a hitherto unreported disease in ten individuals manifesting as moderate to severe transient childhood hypertriglyceridemia and fatty liver followed by hepatic fibrosis and the identification of the mutated gene responsible for this condition. We performed SNP array-based homozygosity mapping and found a single large continuous segment of homozygosity on chromosomal region 12q13.12. The candidate region contained 35 genes that are listed in Online Mendelian Inheritance in Man (OMIM) and 27 other genes. We performed candidate gene sequencing and screened both clinically affected individuals (children and adults with hypertriglyceridemia) and also a healthy cohort for mutations in GPD1, which encodes glycerol-3-phosphate dehydrogenase 1. Mutation analysis revealed a homozygous splicing mutation, c.361-1G>C, which resulted in an aberrantly spliced mRNA in the ten affected individuals. This mutation is predicted to result in a truncated protein lacking essential conserved residues, including a functional site responsible for initial substrate recognition. Functional consequences of the mutation were evaluated by measuring intracellular concentrations of cholesterol and triglyceride as well as triglyceride secretion in HepG2 (hepatocellular carcinoma) human cells lines overexpressing normal and mutant GPD1 cDNA. Overexpression of mutant GPD1 in HepG2 cells, in comparison to overexpression of wild-type GPD1, resulted in increased secretion of triglycerides (p = 0.01). This finding supports the pathogenicity of the identified mutation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

Polygenic Versus Monogenic Causes of Hypercholesterolemia Ascertained Clinically

Jian Wang; Jacqueline S. Dron; Matthew R. Ban; John F. Robinson; Adam D. McIntyre; Maher Alazzam; Pei Jun Zhao; Allison A. Dilliott; Henian Cao; Murray W. Huff; David Rhainds; Cécile Low-Kam; Marie-Pierre Dubé; Guillaume Lettre; Jean-Claude Tardif; Robert A. Hegele

Objective—Next-generation sequencing technology is transforming our understanding of heterozygous familial hypercholesterolemia, including revision of prevalence estimates and attribution of polygenic effects. Here, we examined the contributions of monogenic and polygenic factors in patients with severe hypercholesterolemia referred to a specialty clinic. Approach and Results—We applied targeted next-generation sequencing with custom annotation, coupled with evaluation of large-scale copy number variation and polygenic scores for raised low-density lipoprotein cholesterol in a cohort of 313 individuals with severe hypercholesterolemia, defined as low-density lipoprotein cholesterol >5.0 mmol/L (>194 mg/dL). We found that (1) monogenic familial hypercholesterolemia–causing mutations detected by targeted next-generation sequencing were present in 47.3% of individuals; (2) the percentage of individuals with monogenic mutations increased to 53.7% when copy number variations were included; (3) the percentage further increased to 67.1% when individuals with extreme polygenic scores were included; and (4) the percentage of individuals with an identified genetic component increased from 57.0% to 92.0% as low-density lipoprotein cholesterol level increased from 5.0 to >8.0 mmol/L (194 to >310 mg/dL). Conclusions—In a clinically ascertained sample with severe hypercholesterolemia, we found that most patients had a discrete genetic basis detected using a comprehensive screening approach that includes targeted next-generation sequencing, an assay for copy number variations, and polygenic trait scores.


Canadian Journal of Cardiology | 2013

Western Database of Lipid Variants (WDLV): a catalogue of genetic variants in monogenic dyslipidemias.

Jennifer Fu; Samantha Kwok; Leah Sinai; Omar Abdel-Razek; Janet Babula; Dennis Chen; Emma Farago; Nigel Fernandopulle; Sean J. Leith; Melissa N. Loyzer; Catherine Lu; Niyati Malkani; Nicole Morris; Mandi Schmidt; Randa Stringer; Heather Whitehead; Matthew R. Ban; Joseph B. Dubé; Adam D. McIntyre; Christopher T. Johansen; Henian Cao; Jian Wang; Robert A. Hegele

BACKGROUND Next-generation sequencing (NGS) is nearing routine clinical application, especially for diagnosis of rare monogenic cardiovascular diseases. But NGS uncovers so much variation in an individual genome that filtering steps are required to streamline data management. The first step is to determine whether a potential disease-causing variant has been observed previously in affected patients. METHODS To facilitate this step for lipid disorders, we developed the Western Database of Lipid Variants (WDLV) of 2776 variants in 24 genes that cause monogenic dyslipoproteinemias, including conditions characterized primarily by either high or low low-density lipoprotein cholesterol, high or low high-density lipoprotein cholesterol, high triglyceride, and some miscellaneous disorders. We incorporated quality-control steps to maximize the likelihood that a listed mutation was disease causing. RESULTS The details of each mutation found in a dyslipidemia, together with a mutation map of the causative genes, are shown in graphical display items. CONCLUSIONS WDLV will help clinicians and researchers determine the potential pathogenicity of mutations discovered by DNA sequencing of patients or research participants with lipid disorders.


British Journal of Clinical Pharmacology | 2014

A common hypofunctional genetic variant of GPER is associated with increased blood pressure in women

Ross D. Feldman; Robert Gros; Qingming Ding; Yasin Hussain; Matthew R. Ban; Adam D. McIntyre; Robert A. Hegele

AIMS Activation of vascular GPER has been linked to vasodepressor effects in animals. However, the significance of GPER regulation on chronic blood pressure control in humans is unknown. METHODS To examine this question we determined the functional significance of expression of a common missense single nucleotide variant of GPER, P16L in vascular smooth muscle cells, and its association with blood pressure in humans. Further, to validate the importance of carrying GPER P16L in the development of hypertension we assessed allele frequency in a cohort of hard-to-treat hypertensive patients referred to a tertiary care clinic. RESULTS Expression of the GPER P16L variant (V) vs. wild type (WT) in rat aortic vascular smooth muscle cells, was associated with a significant decrease in G1 (1 μm, a GPER agonist)-mediated ERK phosphorylation (slope of the function of G1-stimulated ERK phosphorylation: GPER content WT: 16.2, 95% CI 9.9, 22.6; V: 5.0, 95% CI 1.0, 9.0; P < 0.005) and apoptosis (slope of the function of G1-stimulated apoptosis: GPER content: WT: 4.4, 95% CI: 3.4, 5.4; V: 2.5, 95% CI 1.6, 2.3 P < 0.005). Normotensive female subjects, but not male subjects, carrying this hypofunctional variant (allele frequency 22%) have increased blood pressure [mean arterial pressure: P16/P16: 80 ± 1 mmHg (n = 204) vs. P16L carriers: 82 ± 1 mmHg (n = 127), 95% CI for difference: 0.6, 4.0 mmHg, P < 0.05], [systolic blood pressure: P16/P16: 105 ± 1 mmHg vs. P16L carriers: 108 ± 1 mmHg, 95% CI for difference:1.0, 5.1 mmHg, P < 0.05], [diastolic blood pressure: P16/P16: 66 ± 0.5 mmHg vs. P16L carriers 68 ± 0.7, 95% CI for difference: 0.2, 3.6 mmHg, P < 0.05]. Further, the P16L allele frequency was almost two-fold higher in female vs. male hypertensive patients (31% vs. 16%, allele ratio 0.5, 95% CI 0.32, 0.76, P < 0.05). CONCLUSIONS The common genetic variant, GPER P16L, is hypofunctional and female carriers of this allele have increased blood pressure. There was an increased prevalence in a population of hard-to-treat hypertensive female patients. Cumulatively, these data suggest that in females, impaired GPER function might be associated with increased blood pressure and risk of hypertension.

Collaboration


Dive into the Adam D. McIntyre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henian Cao

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Matthew R. Ban

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

John F. Robinson

Robarts Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline S. Dron

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Murray W. Huff

Robarts Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael A. Iacocca

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Brooke A. Kennedy

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge