Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Ban is active.

Publication


Featured researches published by Matthew R. Ban.


WOS | 2013

Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia

Christopher T. Johansen; Jian Wang; Matthew B. Lanktree; Henian Cao; Adam D. McIntyre; Matthew R. Ban; Rebecca A. Martins; Brooke A. Kennedy; Reina G. Hassell; Maartje E. Visser; Stephen M. Schwartz; Benjamin F. Voight; Roberto Elosua; Veikko Salomaa; Christopher J. O'Donnell; Geesje M. Dallinga-Thie; Sonia S. Anand; Salim Yusuf; Murray W. Huff; Sekar Kathiresan; Robert A. Hegele

Genome-wide association studies (GWAS) have identified multiple loci associated with plasma lipid concentrations. Common variants at these loci together explain <10% of variation in each lipid trait. Rare variants with large individual effects may also contribute to the heritability of lipid traits; however, the extent to which rare variants affect lipid phenotypes remains to be determined. Here we show an accumulation of rare variants, or a mutation skew, in GWAS-identified genes in individuals with hypertriglyceridemia (HTG). Through GWAS, we identified common variants in APOA5, GCKR, LPL and APOB associated with HTG. Resequencing of these genes revealed a significant burden of 154 rare missense or nonsense variants in 438 individuals with HTG, compared to 53 variants in 327 controls (P = 6.2 × 10−8), corresponding to a carrier frequency of 28.1% of affected individuals and 15.3% of controls (P = 2.6 × 10−5). Considering rare variants in these genes incrementally increased the proportion of genetic variation contributing to HTG.


Lipids in Health and Disease | 2007

Genetic determinants of statin intolerance

Jisun Oh; Matthew R. Ban; Brooke A. Miskie; Rebecca L. Pollex; Robert A. Hegele

BackgroundStatin-related skeletal muscle disorders range from benign myalgias – such as non-specific muscle aches or joint pains without elevated serum creatinine kinase (CK) concentration – to true myositis with >10-fold elevation of serum CK, to rhabdomyolysis and myoglobinuria. The genetic basis of statin-related muscle disorders is largely unknown. Because mutations in the COQ2 gene are associated with severe inherited myopathy, we hypothesized that common, mild genetic variation in COQ2 would be associated with inter-individual variation in statin intolerance. We studied 133 subjects who developed myopathy on statin monotherapy and 158 matched controls who tolerated statins without incident or complaint.ResultsCOQ2 genotypes, based on two single nucleotide polymorphisms (SNP1 and SNP2) and a 2-SNP haplotype, all showed significant associations with statin intolerance. Specifically, the odds ratios (with 95% confidence intervals) for increased risk of statin intolerance among homozygotes for the rare alleles were 2.42 (0.99 to 5.89), 2.33 (1.13 to 4.81) and 2.58 (1.26 to 5.28) for SNP1 and SNP2 genotypes, and the 2-SNP haplotype, respectively.ConclusionThese preliminary pharmacogenetic results, if confirmed, are consistent with the idea that statin intolerance which is manifested primarily through muscle symptoms is associated with genomic variation in COQ2 and thus perhaps with the CoQ10 pathway.


Lipids in Health and Disease | 2005

NPC1L1 haplotype is associated with inter-individual variation in plasma low-density lipoprotein response to ezetimibe.

Robert A. Hegele; Justin Guy; Matthew R. Ban; Jian Xin Wang

BackgroundNPC1L1 encodes a putative intestinal sterol transporter which is the likely target for ezetimibe, a new type of lipid-lowering medication. We previously reported rare non-synonymous mutations in NPC1L1 in an individual who had no plasma lipoprotein response to ezetimibe. We next hypothesized that common variants in NPC1L1 would underlie less extreme inter-individual variations in the plasma LDL cholesterol response to ezetimibe.ResultsIn 101 dyslipidemic subjects, we found that NPC1L1 haplotype was significantly associated with inter-individual variation in the response of plasma LDL cholesterol to treatment with ezetimibe for 12 weeks. Specifically, about one subject in eight lacked the common NPC1L1 haplotype 1735C-25342A-27677T and these subjects had a significantly greater reduction in plasma LDL cholesterol with ezetimibe than subjects with at least one copy of this haplotype (-35.9+4.0 versus -23.6+1.6 percent reduction, P = 0.0054). This was paralleled by a similar non-significant trend of between-haplotype difference in reduction of total cholesterol.ConclusionThese preliminary pharmacogenetic results suggest that NPC1L1 variation is associated with inter-individual variation in response to ezetimibe treatment.


Human Molecular Genetics | 2008

Polygenic determinants of severe hypertriglyceridemia

Jian Wang; Matthew R. Ban; Guangyong Zou; Henian Cao; Tim Lin; Brooke A. Kennedy; Sonia S. Anand; Salim Yusuf; Murray W. Huff; Rebecca L. Pollex; Robert A. Hegele

Recent genome-wide association (GWA) studies have identified new genetic determinants of complex quantitative traits, including plasma triglyceride (TG). We hypothesized that common variants associated with mild TG variation identified in GWA studies would also be associated with severe hypertriglyceridemia (HTG). We studied 132 patients of European ancestry with severe HTG (fasting plasma TG > 10 mmol/l), who had no mutations found by resequencing of candidate genes, and 351 matched normolipidemic controls. We determined genotypes for: GALNT2 rs4846914, TBL2/MLXIPL rs17145738, TRIB1 rs17321515, ANGPTL3 rs12130333, GCKR rs780094, APOA5 rs3135506 (S19W), APOA5 rs662799 (-1131T > C), APOE (isoforms) and LPL rs328 (S447X). We found that: (i) genotypes, including those of APOA5 S19W, APOA5 -1131T > C, APOE, GCKR, TRIB1 and TBL2/MLXIPL, were significantly associated with severe HTG; (ii) odds ratios for these genetic variables were significant in both univariate and multivariate regression analyses, irrespective of the presence or absence of diabetes or obesity; (iii) a significant fraction-about one-quarter-of the explained variation in disease status was associated with these genotypes. Therefore, common SNPs (single nucleotide polymorphisms) that are associated with mild TG variation in GWA studies of normolipidemic subjects are also associated with severe HTG. Our findings are consistent with the emerging model of a complex genetic trait. At the extremes of a quantitative trait, such as severe HTG, are found the cumulative contributions of both multiple rare alleles with large genetic effects and common alleles with small effects.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Resequencing Genomic DNA of Patients With Severe Hypertriglyceridemia (MIM 144650)

Jian Wang; Henian Cao; Matthew R. Ban; Brooke A. Kennedy; Siqi Zhu; Sonia S. Anand; Salim Yusuf; Rebecca L. Pollex; Robert A. Hegele

Objective—The genetic determinants of severe hypertriglyceridemia (HTG; MIM 144650) in adults are poorly defined. We therefore resequenced 3 candidate genes, namely LPL, APOC2, and APOA5, to search for accumulation of missense mutations in patients with severe HTG compared with normolipidemic subjects. Methods and Results—We resequenced >2 million base pairs of genomic DNA from 110 nondiabetic patients with severe HTG and determined the prevalence of coding sequence variants compared with 472 age- and sex-matched normolipidemic controls. We found: (1) heterozygous mutations (LPL p.Q-12E >11X, p.D25H, p.W86R, p.G188E, p.I194T and p.P207L; APOC2 p.K19T and IVS2–30G>A) in 10.0% of severe HTG patients compared with 0.2% of controls (carrier odds ratio [OR] 52, 95% confidence interval [CI] 8.6 to 319); and (2) an association of the APOA5 p.S19W missense variant with severe HTG (carrier OR 5.5 95% CI 3.3 to 9.1). Furthermore, either rare mutations or the APOA5 p.S19W variant were found in 41.8% of HTG subjects compared with 8.9% of controls (carrier OR 7.4, 95% CI 4.5 to 12.0). Also, heterozygotes for rare mutations had a significantly reduced plasma triglyceride response to fibrate monotherapy. Conclusions—Both common and rare DNA variants in candidate genes were found in a substantial proportion of severe HTG patients. The findings underscore the value of candidate gene resequencing to understand the genetic contribution in complex lipoprotein and metabolic disorders.


Cardiovascular Diabetology | 2008

Association between the FTO rs9939609 polymorphism and the metabolic syndrome in a non-Caucasian multi-ethnic sample

Salam A. Al-Attar; Rebecca L. Pollex; Matthew R. Ban; T. Kue Young; Peter Bjerregaard; Sonia S. Anand; Salim Yusuf; Bernard Zinman; Stewart B. Harris; Anthony J. Hanley; Philip W. Connelly; Murray W. Huff; Robert A. Hegele

BackgroundThe rs9939609 T>A single-nucleotide polymorphism (SNP) in the FTO gene has previously been found to be associated with obesity in European Caucasian samples. The objective of this study is to examine whether this association extends to metabolic syndrome (MetS) and applies in non-Caucasian samples.MethodsThe FTO rs9939609 SNP was genotyped in 2121 subjects from four different non-Caucasian geographical ancestries. Subjects were classified for the presence or absence of MetS according to the International Diabetes Federation (IDF) and National Cholesterol Education Program Adult Treatment Panel (NCEP ATP) III definitions.ResultsCarriers of ≥ 1 copy of the rs9939609 A allele were significantly more likely to have IDF-defined MetS (35.8%) than non-carriers (31.2%), corresponding to a carrier odds ratio (OR) of 1.23 (95% confidence interval [CI] 1.01 to 1.50), with a similar trend for the NCEP ATP III-defined MetS. Subgroup analysis showed that the association was particularly strong in men. The association was related to a higher proportion of rs9939609 A allele carriers meeting the waist circumference criterion; a higher proportion also met the HDL cholesterol criterion compared with wild-type homozygotes.ConclusionThus, the FTO rs9939609 SNP was associated with an increased risk for MetS in this multi-ethnic sample, confirming that the association extends to non-Caucasian population samples.


Human Molecular Genetics | 2009

A polygenic basis for four classical Fredrickson hyperlipoproteinemia phenotypes that are characterized by hypertriglyceridemia

Robert A. Hegele; Matthew R. Ban; Neil Hsueh; Brooke A. Kennedy; Henian Cao; Guangyong Zou; Sonia S. Anand; Salim Yusuf; Murray W. Huff; Jian Wang

Numerous single nucleotide polymorphisms (SNPs) have been found in recent genome wide association studies (GWAS) to be associated with subtle plasma triglyceride (TG) variation in normolipidemic subjects. However, since these GWAS did not specifically evaluate patients with rare disorders of lipoprotein metabolism—‘hyperlipoproteinemia’ (HLP)—it remains largely unresolved whether any of these SNP determinants of modest physiological changes in TG are necessarily also determinants of most HLP phenotypes. To address this question, we evaluated 28 TG-associated SNPs from GWAS in 386 unrelated adult patients with one of five Fredrickson phenotypes (HLP types 2A, 2B, 3, 4 and 5) and 242 matched normolipidemic controls. We found that several SNPs associated with TG in normolipidemic samples, including APOA5 p.S19W and -1131T>C, TRIB1 rs17321515, TBL2 rs17145738, GCKR rs780094, GALNT2 rs4846914 and ANGPTL3 rs12130333, were significantly associated with HLP types 2B, 3, 4 and 5. The findings indicate that: (i) the TG-associated Fredrickson HLP types 2B, 3, 4 and 5 are polygenic traits; (ii) these Fredrickson HLP types share numerous genetic determinants among themselves; and (iii) genetic determinants of modest TG variation in normolipidemic population samples also underlie—to an apparently even greater degree—susceptibility to these rare HLP phenotypes. Thus, the TG-associated Fredrickson HLP types 2B, 3, 4 and 5, although historically considered to be distinct are actually complex traits sharing among them several common genetic determinants seen in GWAS of normolipidemic population samples.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Elevated Serum C-Reactive Protein and Free Fatty Acids Among Nondiabetic Carriers of Missense Mutations in the Gene Encoding Lamin A/C (LMNA) With Partial Lipodystrophy

Robert A. Hegele; Maria E. Kraw; Matthew R. Ban; Brooke A. Miskie; Murray W. Huff; Henian Cao

Objective—Dunnigan-type familial partial lipodystrophy (FPLD) due to mutant LMNA is a monogenic form of insulin resistance. Affected subjects, especially women, are at increased risk of early coronary heart disease (CHD). Although common insulin resistance is associated with several biochemical perturbations, including elevated C-reactive protein (CRP), the biochemical profile in subjects with mutant LMNA is incompletely defined. Methods and Results—We studied 35 nondiabetic adult FPLD subjects (of whom 24 were women) with either the LMNA R482Q or R482W missense mutations and 51 matched normal first-degree relatives (of whom 27 were women). Compared with normal controls, LMNA mutation carriers had significantly higher plasma insulin and more dyslipidemia, higher mean triglycerides and lower HDL cholesterol, significantly higher nonesterified free fatty acids and CRP, and significantly lower leptin and adiponectin than controls. Subgroup analyses showed that these differences were more pronounced in women. Other biomarkers such as resistin, fibrinogen, and plasminogen activator inhibitor-1 were not different between groups. Conclusions—LMNA mutations in nondiabetic patients with FPLD are associated with several metabolic and biochemical changes, particularly in women. The unfavorable profile might contribute to the increased susceptibility to CHD seen in LMNA mutation carriers.


Nature Reviews Cardiology | 2008

APOA5 genetic variants are markers for classic hyperlipoproteinemia phenotypes and hypertriglyceridemia

Jian Wang; Matthew R. Ban; Brooke A. Kennedy; Sonia S. Anand; Salim Yusuf; Murray W. Huff; Rebecca L. Pollex; Robert A. Hegele

Background Several known candidate gene variants are useful markers for diagnosing hyperlipoproteinemia. In an attempt to identify other useful variants, we evaluated the association of two common APOA5 single-nucleotide polymorphisms across the range of classic hyperlipoproteinemia phenotypes.Methods We assessed plasma lipoprotein profiles and APOA5 S19W and −1131T>C genotypes in 678 adults from a single tertiary referral lipid clinic and in 373 normolipidemic controls matched for age and sex, all of European ancestry.Results We observed significant stepwise relationships between APOA5 minor allele carrier frequencies and plasma triglyceride quartiles. The odds ratios for hyperlipoproteinemia types 2B, 3, 4 and 5 in APOA5 S19W carriers were 3.11 (95% CI 1.63–5.95), 4.76 (2.25–10.1), 2.89 (1.17–7.18) and 6.16 (3.66–10.3), respectively. For APOA5 −1131T>C carriers, the odds ratios for these hyperlipoproteinemia subtypes were 2.23 (95% CI 1.21–4.08), 3.18 (1.55–6.52), 3.95 (1.85–8.45) and 4.24 (2.64–6.81), respectively. The overall odds ratio for the presence of either allele in lipid clinic patients was 2.58 (95% CI 1.89–3.52).Conclusions A high proportion of patients with four classic hyperlipoproteinemia phenotypes are carriers of either the APOA5 S19W or −1131T>C variant or both. These two variants are robust genetic biomarkers of a range of clinical hyperlipoproteinemia phenotypes linked by hypertriglyceridemia.


Stroke | 2003

Lipoprotein Lipase (LPL) Gene Variation and Progression of Carotid Artery Plaque

J. David Spence; Matthew R. Ban; Robert A. Hegele

Background and Purpose— Coding single nucleotide polymorphisms (cSNPs) in the lipoprotein lipase (LPL) gene have been associated with lipoprotein phenotypes and vascular disease risk. We studied the association between LPL cSNPs and a novel noninvasive measure of disease, namely, cross-sectional carotid plaque area (CPA) on B-mode ultrasound. Methods— Four hundred fifty-two patients from an atherosclerosis prevention clinic had determinations of baseline and total CPA. Traditional atherosclerosis risk factors were recorded, and the LPL D9N, N291S, and S447X cSNPs were genotyped. Multiple regression analysis was used to identify determinants of CPA. Results— Minor allele frequencies for LPL D9N, N291S, and S447X were 2.8%, 0.9%, and 4.4%, respectively. There were no significant between-genotype differences in treated fasting lipids. The LPL D9N genotype was a significant predictor of both baseline CPA (P =0.008) and plaque progression from baseline to 1 year later (P =0.001). Heterozygotes for the N9 allele had higher mean baseline CPA and plaque progression than did LPL D9/D9 homozygotes. Conclusions— LPL D9N genotype may be a determinant of atherosclerosis as estimated by static baseline CPA and by progression of CPA.

Collaboration


Dive into the Matthew R. Ban's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Henian Cao

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Adam D. McIntyre

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Murray W. Huff

Robarts Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonia S. Anand

Population Health Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brooke A. Kennedy

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Rebecca L. Pollex

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge