Adam D. Wright
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adam D. Wright.
Nature Communications | 2016
Adam D. Wright; Carla Verdi; Rebecca L. Milot; Giles E. Eperon; Miguel A. Pérez-Osorio; Henry J. Snaith; Feliciano Giustino; Michael B. Johnston; Laura M. Herz
Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3u2009meV, and Fröhlich coupling constants of ∼40 and 60u2009meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.
Nature Communications | 2014
Thomas W. Muehleisen; Markus Leber; Thomas G. Schulze; Jana Strohmaier; Franziska Degenhardt; Manuel Mattheisen; Andreas J. Forstner; Johannes Schumacher; René Breuer; Sandra Meier; Stefan Herms; Per Hoffmann; André Lacour; Stephanie H. Witt; Andreas Reif; Bertram Müller-Myhsok; Susanne Lucae; Wolfgang Maier; Markus J. Schwarz; Helmut Vedder; Jutta Kammerer-Ciernioch; Andrea Pfennig; Michael Bauer; Martin Hautzinger; Susanne Moebus; Lutz Priebe; Piotr M. Czerski; Joanna Hauser; Jolanta Lissowska; Neonila Szeszenia-Dabrowska
Bipolar disorder (BD) is a common and highly heritable mental illness and genome-wide association studies (GWAS) have robustly identified the first common genetic variants involved in disease aetiology. The data also provide strong evidence for the presence of multiple additional risk loci, each contributing a relatively small effect to BD susceptibility. Large samples are necessary to detect these risk loci. Here we present results from the largest BD GWAS to date by investigating 2.3 million single-nucleotide polymorphisms (SNPs) in a sample of 24,025 patients and controls. We detect 56 genome-wide significant SNPs in five chromosomal regions including previously reported risk loci ANK3, ODZ4 and TRANK1, as well as the risk locus ADCY2 (5p15.31) and a region between MIR2113 and POU3F2 (6q16.1). ADCY2 is a key enzyme in cAMP signalling and our finding provides new insights into the biological mechanisms involved in the development of BD.
Nature Materials | 2014
F. Castles; Stephen M. Morris; Jmc Hung; Malik M. Qasim; Adam D. Wright; S. Nosheen; Su Soek Choi; Bi Outram; Steve J. Elston; C. Burgess; L. Hill; Timothy D. Wilkinson; Harry J. Coles
Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.
Journal of Physical Chemistry Letters | 2016
Jay B. Patel; Rebecca L. Milot; Adam D. Wright; Laura M. Herz; Michael B. Johnston
Hybrid metal-halide perovskites have emerged as a leading class of semiconductors for optoelectronic devices because of their desirable material properties and versatile fabrication methods. However, little is known about the chemical transformations that occur in the initial stages of perovskite crystal formation. Here we follow the real-time formation dynamics of MAPbI3 from a bilayer of lead iodide (PbI2) and methylammonium iodide (MAI) deposited through a two-step thermal evaporation process. By lowering the substrate temperature during deposition, we are able to initially inhibit intermixing of the two layers. We subsequently use infrared and visible light transmission, X-ray diffraction, and photoluminescence lifetime measurements to reveal the room-temperature transformations that occur in vacuum and ambient air, as MAI diffuses into the PbI2 lattice to form MAPbI3. In vacuum, the transformation to MAPbI3 is incomplete as unreacted MAI is retained in the film. However, exposure to moist air allows for conversion of the unreacted MAI to MAPbI3, demonstrating that moisture is essential in making MAI more mobile and thus aiding perovskite crystallization. These dynamic processes are reflected in the observed charge-carrier lifetimes, which strongly fluctuate during periods of large ion migration but steadily increase with improving crystallinity.
Eye | 2008
Adam D. Wright; Nicholas G. Martin; P M Dodson
Plasma homocysteine has been identified as a risk factor for arterial disease, retinal artery and vein occlusions, and other common eye diseases. The value of treating an elevated plasma homocysteine with folic acid for preventing further vascular disease has not been proven. Although secondary prevention of coronary artery disease using this approach has been unsuccessful, trials on primary prevention of stroke and loss of cognitive function with folic acid supplementation appear to be successful. Further trial data are awaited. In patients with premature retinovascular disease, the measurement of plasma homocysteine is suggested and reduction of elevated homocysteine with folic acid for secondary prevention of retinal arterial and venous occlusion. Meanwhile, the debate on fortification of flour for primary prevention of neural tube defects, which has already taken place in North America, continues in European countries. Such fortification could have an impact on primary and secondary prevention of vascular disease.
The Journal of Clinical Psychiatry | 2015
Andrew Frankland; Ester Cerrillo; Dusan Hadzi-Pavlovic; Gloria Roberts; Adam D. Wright; Colleen K. Loo; Michael Breakspear; Philip B. Mitchell
OBJECTIVEnIn a prior study of bipolar disorder pedigrees, we demonstrated distinct clinical differences between depressive episodes in bipolar disorder and major depressive disorder (MDD), including differentiation between these conditions using the Probabilistic Approach to Bipolar Depression. The aim of this retrospective study was to compare the phenomenology of the most severe lifetime depressive episodes between bipolar I (BP-I) and II (BP-II) disorder subtypes and MDD in these pedigrees.nnnMETHODnPatients with DSM-IV diagnoses of BP-I (n = 202), BP-II (n = 44), and MDD (n = 120) from bipolar disorder pedigrees were assessed using the Diagnostic Interview for Genetic Studies between 1998 and 2012. Multivariate logistic regression was used to identify distinguishing clinical features. The utility of the Probabilistic Approach in distinguishing BP-I and BP-II depression from MDD was assessed.nnnRESULTSnBP-I differed from MDD in terms of greater rates of psychomotor retardation (P < .05) and psychotic features (P < .05). BP-II was distinguished from MDD (P < .01) by the greater likelihood of mixed features. Patients with BP-II had a greater likelihood of mixed features (P < .001) and a lesser likelihood of psychomotor retardation (P < .05) compared to those with BP-I. The Probabilistic Approach significantly differentiated both BP-I and BP-II from MDD (P < .01 to P < .001, depending on cutoff) but did not robustly distinguish between BP-I and BP-II.nnnCONCLUSIONSnFirst, the differentiation of BP-II from both BP-I depression and MDD in terms of the presence of mixed symptoms is of particular interest given the current debate over mixed specifiers for these conditions in DSM-5. Second, the Probabilistic Approach to Bipolar Depression was demonstrated for the first time to significantly distinguish both bipolar disorder subtypes from MDD.
Molecular Psychiatry | 2018
Hsing-Yi Chang; Naosuke Hoshina; Chen Zhang; Yina Ma; H Cao; Yunfei Wang; D-d Wu; Sarah E. Bergen; Mikael Landén; C. M. Hultman; Martin Preisig; Zoltán Kutalik; Enrique Castelao; Maria Grigoroiu-Serbanescu; Andreas J. Forstner; Jana Strohmaier; Julian Hecker; Thomas G. Schulze; Bertram Müller-Myhsok; Andreas Reif; Philip B. Mitchell; Nicholas G. Martin; Peter R. Schofield; S. Cichon; M. M. Nöthen; Lena Backlund; Louise Frisén; Catharina Lavebratt; Martin Schalling; Urban Ösby
Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29u2009557 cases and 32u2009056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.
Nature Communications | 2018
Chris Davies; Marina R. Filip; Jay B. Patel; Timothy W. Crothers; Carla Verdi; Adam D. Wright; Rebecca L. Milot; Feliciano Giustino; Michael B. Johnston; Laura M. Herz
Photovoltaic devices based on metal halide perovskites are rapidly improving in efficiency. Once the Shockley–Queisser limit is reached, charge-carrier extraction will be limited only by radiative bimolecular recombination of electrons with holes. Yet, this fundamental process, and its link with material stoichiometry, is still poorly understood. Here we show that bimolecular charge-carrier recombination in methylammonium lead triiodide perovskite can be fully explained as the inverse process of absorption. By correctly accounting for contributions to the absorption from excitons and electron-hole continuum states, we are able to utilise the van Roosbroeck–Shockley relation to determine bimolecular recombination rate constants from absorption spectra. We show that the sharpening of photon, electron and hole distribution functions significantly enhances bimolecular charge recombination as the temperature is lowered, mirroring trends in transient spectroscopy. Our findings provide vital understanding of band-to-band recombination processes in this hybrid perovskite, which comprise direct, fully radiative transitions between thermalized electrons and holes.Radiative bimolecular processes will dominate charge-carrier recombination in hybrid perovskite solar cells operating near the Shockley-Queisser limit. Here, the authors show that such processes are the inverse of absorption and increase as distribution functions sharpen towards lower temperatures.
Advanced Functional Materials | 2017
Adam D. Wright; Rebecca L. Milot; Giles E. Eperon; Henry J. Snaith; Michael B. Johnston; Laura M. Herz
ACS energy letters | 2017
Juliane Borchert; Rebecca L. Milot; Jay B. Patel; Chris Davies; Adam D. Wright; Laura Martínez Maestro; Henry J. Snaith; Laura M. Herz; Michael B. Johnston