Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henry J. Snaith is active.

Publication


Featured researches published by Henry J. Snaith.


Science | 2012

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

Michael M. Lee; Joël Teuscher; Tsutomu Miyasaka; Takurou N. Murakami; Henry J. Snaith

Perovskite Photovoltaics For many types of low-cost solar cells, including those using dye-sensitized titania, performance is limited by low open-circuit voltages. Lee et al. (p. 643, published online 4 October; see the Perspective by Norris and Aydil) have developed a solid-state cell in which structured films of titania or alumina nanoparticles are solution coated with a lead-halide perovskite layer that acts as the absorber and n-type photoactive layer. These particles are coated with a spirobifluorene organic-hole conductor in a solar cell with transparent oxide and metal contacts. For the alumina particles, power conversion efficiencies of up to 10.9% were obtained. Mesostructured alumina acts as an insulating scaffold for the assembly of very thin films of n- and p-type semiconductors. The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This “meso-superstructured solar cell” exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.


Nature | 2013

Efficient planar heterojunction perovskite solar cells by vapour deposition

Mingzhen Liu; Michael B. Johnston; Henry J. Snaith

Many different photovoltaic technologies are being developed for large-scale solar energy conversion. The wafer-based first-generation photovoltaic devices have been followed by thin-film solid semiconductor absorber layers sandwiched between two charge-selective contacts and nanostructured (or mesostructured) solar cells that rely on a distributed heterojunction to generate charge and to transport positive and negative charges in spatially separated phases. Although many materials have been used in nanostructured devices, the goal of attaining high-efficiency thin-film solar cells in such a way has yet to be achieved. Organometal halide perovskites have recently emerged as a promising material for high-efficiency nanostructured devices. Here we show that nanostructuring is not necessary to achieve high efficiencies with this material: a simple planar heterojunction solar cell incorporating vapour-deposited perovskite as the absorbing layer can have solar-to-electrical power conversion efficiencies of over 15 per cent (as measured under simulated full sunlight). This demonstrates that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.


Advanced Materials | 2014

High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites

Christian Wehrenfennig; Giles E. Eperon; Michael B. Johnston; Henry J. Snaith; Laura M. Herz

Organolead trihalide perovskites are shown to exhibit the best of both worlds: charge-carrier mobilities around 10 cm2 V−1 s−1 and low bi-molecular charge-recombination constants. The ratio of the two is found to defy the Langevin limit of kinetic charge capture by over four orders of magnitude. This mechanism causes long (micrometer) charge-pair diffusion lengths crucial for flat-heterojunction photovoltaics.


Nature Communications | 2013

Overcoming ultraviolet light instability of sensitized TiO 2 with meso-superstructured organometal tri-halide perovskite solar cells

Tomas Leijtens; Giles E. Eperon; Sandeep Pathak; Antonio Abate; Michael M. Lee; Henry J. Snaith

The power conversion efficiency of hybrid solid-state solar cells has more than doubled from 7 to 15% over the past year. This is largely as a result of the incorporation of organometallic trihalide perovskite absorbers into these devices. But, as promising as this development is, long-term operational stability is just as important as initial conversion efficiency when it comes to the development of practical solid-state solar cells. Here we identify a critical instability in mesoporous TiO₂-sensitized solar cells arising from light-induced desorption of surface-adsorbed oxygen. We show that this instability does not arise in mesoporous TiO₂-free mesosuperstructured solar cells. Moreover, our TiO₂-free cells deliver stable photocurrent for over 1,000 h continuous exposure and operation under full spectrum simulated sunlight.


Journal of Physical Chemistry Letters | 2014

Anomalous Hysteresis in Perovskite Solar Cells

Henry J. Snaith; Antonio Abate; James M. Ball; Giles E. Eperon; Tomas Leijtens; Nakita K. Noel; Samuel D. Stranks; Jacob Tse-Wei Wang; Konrad Wojciechowski; Wei Zhang

Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current-voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance.


Energy and Environmental Science | 2014

Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells

Giles E. Eperon; Samuel D. Stranks; Christopher Menelaou; Michael B. Johnston; Laura M. Herz; Henry J. Snaith

Perovskite-based solar cells have attracted significant recent interest, with power conversion efficiencies in excess of 15% already superceding a number of established thin-film solar cell technologies. Most work has focused on a methylammonium lead trihalide perovskites, with a bandgaps of ∼1.55 eV and greater. Here, we explore the effect of replacing the methylammonium cation in this perovskite, and show that with the slightly larger formamidinium cation, we can synthesise formamidinium lead trihalide perovskites with a bandgap tunable between 1.48 and 2.23 eV. We take the 1.48 eV-bandgap perovskite as most suited for single junction solar cells, and demonstrate long-range electron and hole diffusion lengths in this material, making it suitable for planar heterojunction solar cells. We fabricate such devices, and due to the reduced bandgap we achieve high short-circuit currents of >23 mA cm−2, resulting in power conversion efficiencies of up to 14.2%, the highest efficiency yet for solution processed planar heterojunction perovskite solar cells. Formamidinium lead triiodide is hence promising as a new candidate for this class of solar cell.


Nature Communications | 2013

Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates

Pablo Docampo; James M. Ball; Mariam Darwich; Giles E. Eperon; Henry J. Snaith

Organometal trihalide perovskite solar cells offer the promise of a low-cost easily manufacturable solar technology, compatible with large-scale low-temperature solution processing. Within 1 year of development, solar-to-electric power-conversion efficiencies have risen to over 15%, and further imminent improvements are expected. Here we show that this technology can be successfully made compatible with electron acceptor and donor materials generally used in organic photovoltaics. We demonstrate that a single thin film of the low-temperature solution-processed organometal trihalide perovskite absorber CH3NH3PbI3-xClx, sandwiched between organic contacts can exhibit devices with power-conversion efficiency of up to 10% on glass substrates and over 6% on flexible polymer substrates. This work represents an important step forward, as it removes most barriers to adoption of the perovskite technology by the organic photovoltaic community, and can thus utilize the extensive existing knowledge of hybrid interfaces for further device improvements and flexible processing platforms.


Nature Nanotechnology | 2015

Metal-halide perovskites for photovoltaic and light-emitting devices

Samuel D. Stranks; Henry J. Snaith

Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.


Energy and Environmental Science | 2013

Low-temperature processed meso-superstructured to thin-film perovskite solar cells

James M. Ball; Michael M. Lee; Andrew Hey; Henry J. Snaith

We have reduced the processing temperature of the bulk absorber layer in CH3NH3PbI3−xClx perovskite solar cells from 500 to <150 °C and achieved power conversion efficiencies up to 12.3%. Remarkably, we find that devices with planar thin-film architecture, where the ambipolar perovskite transports both holes and electrons, convert the absorbed photons into collected charge with close to 100% efficiency.


Science | 2016

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

David P. McMeekin; Golnaz Sadoughi; Waqaas Rehman; Giles E. Eperon; Michael Saliba; Maximilian T. Hörantner; Amir A. Haghighirad; Nobuya Sakai; Lars Korte; Bernd Rech; Michael B. Johnston; Laura M. Herz; Henry J. Snaith

Perovskites for tandem solar cells Improving the performance of conventional single-crystalline silicon solar cells will help increase their adoption. The absorption of bluer light by an inexpensive overlying solar cell in a tandem arrangement would provide a step in the right direction by improving overall efficiency. Inorganic-organic perovskite cells can be tuned to have an appropriate band gap, but these compositions are prone to decomposition. McMeekin et al. show that using cesium ions along with formamidinium cations in lead bromide–iodide cells improved thermal and photostability. These improvements lead to high efficiency in single and tandem cells. Science, this issue p. 151 Addition of cesium cations creates a robust ideal inorganic-organic perovskite absorber for tandem silicon solar cells. Metal halide perovskite photovoltaic cells could potentially boost the efficiency of commercial silicon photovoltaic modules from ∼20 toward 30% when used in tandem architectures. An optimum perovskite cell optical band gap of ~1.75 electron volts (eV) can be achieved by varying halide composition, but to date, such materials have had poor photostability and thermal stability. Here we present a highly crystalline and compositionally photostable material, [HC(NH2)2]0.83Cs0.17Pb(I0.6Br0.4)3, with an optical band gap of ~1.74 eV, and we fabricated perovskite cells that reached open-circuit voltages of 1.2 volts and power conversion efficiency of over 17% on small areas and 14.7% on 0.715 cm2 cells. By combining these perovskite cells with a 19%-efficient silicon cell, we demonstrated the feasibility of achieving >25%-efficient four-terminal tandem cells.

Collaboration


Dive into the Henry J. Snaith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annamaria Petrozza

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Wei Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Abate

Helmholtz-Zentrum Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge