Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam F. A. Pellegrini is active.

Publication


Featured researches published by Adam F. A. Pellegrini.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe

William R. L. Anderegg; Tamir Klein; Megan K. Bartlett; Lawren Sack; Adam F. A. Pellegrini; Brendan Choat; Steven Jansen

Significance Predicting the impacts of climate extremes on plant communities is a central challenge in ecology. Physiological traits may improve prediction of drought impacts on forests globally. We perform a meta-analysis across 33 studies that span all forested biomes and find that, among the examined traits, hydraulic traits explain cross-species patterns in mortality from drought. Gymnosperm and angiosperm mortality was associated with different hydraulic traits, giving insight into the relative weights of different traits and mechanisms in mortality prediction. Our results provide a foundation for more mechanistic predictions of drought-induced tree mortality across Earth’s diverse forests. Drought-induced tree mortality has been observed globally and is expected to increase under climate change scenarios, with large potential consequences for the terrestrial carbon sink. Predicting mortality across species is crucial for assessing the effects of climate extremes on forest community biodiversity, composition, and carbon sequestration. However, the physiological traits associated with elevated risk of mortality in diverse ecosystems remain unknown, although these traits could greatly improve understanding and prediction of tree mortality in forests. We performed a meta-analysis on species’ mortality rates across 475 species from 33 studies around the globe to assess which traits determine a species’ mortality risk. We found that species-specific mortality anomalies from community mortality rate in a given drought were associated with plant hydraulic traits. Across all species, mortality was best predicted by a low hydraulic safety margin—the difference between typical minimum xylem water potential and that causing xylem dysfunction—and xylem vulnerability to embolism. Angiosperms and gymnosperms experienced roughly equal mortality risks. Our results provide broad support for the hypothesis that hydraulic traits capture key mechanisms determining tree death and highlight that physiological traits can improve vegetation model prediction of tree mortality during climate extremes.


Ecology | 2015

Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna

Adam F. A. Pellegrini; Lars O. Hedin; Navashni Govender

Fire and nutrients interact to influence the global distribution and dynamics of the savanna biome, but the results of these interactions are both complex and poorly known. A critical but unresolved question is whether short-term losses of carbon and nutrients caused by fire can trigger long-term and potentially compensatory responses in the nutrient stoichiometry of plants, or in the abundance of dinitrogen-fixing trees. There is disagreement in the literature about the potential role of fire on savanna nutrients, and, in turn, on plant stoichiometry and composition. A major limitation has been the lack of fire manipulations over time scales sufficiently long for these interactions to emerge. We use a 58-year, replicated, large-scale, fire manipulation experiment in Kruger National Park (South Africa) in savanna to quantify the effect of fire on (1) distributions of carbon, nitrogen, and phosphorus at the ecosystem scale; (2) carbon : nitrogen : phosphorus stoichiometry of above- and belowground tissues ...


Ecology | 2014

Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil

Adam F. A. Pellegrini; William A. Hoffmann; Augusto C. Franco

The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to fire-driven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate:ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical landscapes. In turn, the link between forest development and nitrogen pool recovery creates a framework for evaluating potential positive feedbacks on savanna-forest boundaries.


Ecology | 2016

Nutrient limitation in tropical savannas across multiple scales and mechanisms

Adam F. A. Pellegrini

Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape scales, and is regulated through different mechanisms based on spatial (differences in underlying geology), temporal (stage in biome transition) and biological (species traits and community composition) variability.


Nature | 2017

Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

Adam F. A. Pellegrini; Anders Ahlström; Sarah E. Hobbie; Peter B. Reich; Lars Nieradzik; Bryant C. Scharenbroch; Ari Jumpponen; William R. L. Anderegg; James T. Randerson; Robert B. Jackson

Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.


Ecology Letters | 2017

Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change

Adam F. A. Pellegrini; William R. L. Anderegg; C. E. Timothy Paine; William A. Hoffmann; Tyler R. Kartzinel; Sam Rabin; Douglas Sheil; Augusto C. Franco; Stephen W. Pacala

Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models.


Ecology | 2016

Aridity, not fire, favors nitrogen‐fixing plants across tropical savanna and forest biomes

Adam F. A. Pellegrini; Lars O. Hedin; Tristan Charles-Dominique; Amy Tourgee

Tropical savannas are hypothesized to be hot spots of nitrogen-fixer diversity and activity because of the high disturbance and low nitrogen characteristic of savanna landscapes. Here we compare the abundances of nitrogen-fixing and non-fixing trees in both tropical savannas and tropical forests under climatically equivalent conditions, using plant inventory studies across 566 plots in South America and Africa. A single factor, aridity, explained 19-54% of the variance in fixer abundance, and unexpectedly was more important than fire frequency, biome, and continent. Nitrogen fixers were more abundant in arid environments; as a result, African savannas, which tend to be drier, were richer in nitrogen fixers than South American savannas. Fixer abundance converged on similar levels in forests in both continents. We conclude that climate plays a greater role than fire in determining the distribution of nitrogen fixers across tropical savanna and forest biomes.


Journal of Ecology | 2017

Woody plant biomass and carbon exchange depend on elephant‐fire interactions across a productivity gradient in African savanna

Adam F. A. Pellegrini; Robert M. Pringle; Navashni Govender; Lars O. Hedin

Elephants and fire are individually well-known disturbance agents within savanna ecosystems, but their interactive role in governing tree-cover dynamics and savanna-forest biome boundaries remain unresolved. Of central importance are the mechanisms by which elephants vs. fire affect tree biomass and cover, and how – over long time periods – both factors interact with rainfall and soils to govern tree biomass and carbon dynamics. Here, we evaluated the response of woody vegetation to 56 years of fire manipulation in South Africas Kruger National Park, with three fire regimes (annual, triennial, and unburned) replicated across a productivity gradient and subject to two periods of contrasting elephant abundances (generated by the cessation of culling in 1994). Higher fire frequencies had a negative effect on woody biomass in the low-elephant period, but this effect was weak-to-negligible in the high-elephant period as the difference among fire treatments diminished. Moreover, elephants removed increasing amounts of woody biomass as productivity increased across study sites, but fire did not. We infer that elephant-induced tree mortality could overcome increases in woody-plant productivity, while fire-induced mortality alone could not. Elephants caused woody-plant carbon to shift from a sink to a source; this effect was independent of fire treatment, with highest rates of net carbon removal in the wettest and most productive site. Synthesis: Our results reveal a context-dependent interaction between fire and elephants as disturbance agents in savanna: the influence of fire on woody plants was sensitive to the abundance of elephants and diminished with increased plant productivity. In contrast, elephants were capable of shifting landscapes from relatively dense woodland to open savanna, even in unburned sites, and exerted strong impacts irrespective of site conditions and plant productivity. This article is protected by copyright. All rights reserved.


Bulletin of The Ecological Society of America | 2015

Fire Alters Ecosystem Carbon and Nutrients but not Plant Nutrient Stoichiometry

Adam F. A. Pellegrini; Lars O. Hedin; Navashni Govender

Fire and nutrients interact to influence the global distribution and dynamics of the savanna biome, but the results of these interactions are both complex and poorly known. A critical but unresolved question is whether short-term losses of carbon and nutrients caused by fire can trigger long-term and potentially compensatory responses in the nutrient stoichiometry of plants, or in the abundance of dinitrogen-fixing trees. There is disagreement in the literature about the potential role of fire on savanna nutrients, and, in turn, on plant stoichiometry and composition. A major limitation has been the lack of fire manipulations over time scales sufficiently long for these interactions to emerge. We use a 58-year, replicated, large-scale, fire manipulation experiment in Kruger National Park (South Africa) in savanna to quantify the effect of fire on (1) distributions of carbon, nitrogen, and phosphorus at the ecosystem scale; (2) carbon: nitrogen: phosphorus stoichiometry of above- and belowground tissues of plant species; and (3) abundance of plant functional groups including nitrogen fixers. Our results show dramatic effects of fire on the relative distribution of nutrients in soils, but that individual plant stoichiometry and plant community composition remained unexpectedly resilient. Moreover, measures of nutrients and carbon stable isotopes allowed us to discount the role of tree cover change in favor of the turnover of herbaceous biomass as the primary mechanism that mediates a transition from low to high soil carbon and nutrients in the absence of fire. We conclude that, in contrast to extra-tropical grasslands or closed-canopy forests, vegetation in the savanna biome may be uniquely adapted to nutrient losses caused by recurring fire.


Ecology Letters | 2018

Edge fires drive the shape and stability of tropical forests

Laurent Hébert-Dufresne; Adam F. A. Pellegrini; Uttam Bhat; S. Redner; Stephen W. Pacala; Andrew Berdahl

In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests. We analyze high-resolution remote-sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter-area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest-grassland ecotones. Deviations from this perimeter-area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long-distance seed dispersal determine whether collapse of regional-scale tree cover is continuous or discontinuous as fire frequency changes.

Collaboration


Dive into the Adam F. A. Pellegrini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William A. Hoffmann

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Navashni Govender

South African National Parks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Tourgee

Environmental Defense Fund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge