Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Hedberg-Buenz is active.

Publication


Featured researches published by Adam Hedberg-Buenz.


Investigative Ophthalmology & Visual Science | 2010

Genetic dependence of central corneal thickness among inbred strains of mice.

Geoffrey D. Lively; B. Jiang; Adam Hedberg-Buenz; Bo Chang; Greg E. Petersen; Kai Wang; Markus H. Kuehn; Michael G. Anderson

PURPOSE Central corneal thickness (CCT) exhibits broad variability. For unknown reasons, CCT also associates with diseases not typically considered corneal, particularly glaucoma. The purpose of this study was to test the strain dependence of CCT variability among inbred mice and identify cellular and molecular factors associated with differing CCT. METHODS Methodology for measuring murine CCT with ultrasound pachymetry was developed and used to measure CCT among 17 strains of mice. Corneas from three strains with nonoverlapping differences in CCT (C57BLKS/J, C57BL/6J, and SJL/J) were compared by histology, transmission electron microscopy, and expression profiling with gene microarrays. RESULTS CCT in mice was highly strain dependent. CCT exhibited continuous variation from 89.2 microm in C57BLKS/J to 123.8 microm in SJL/J. Stromal thickness was the major determinant of the varying murine CCT, with epithelial thickness also contributing. Corneal expression levels of many genes differed between strains with differing CCT, but most of these changes did not correlate with the changes observed in previously studied corneal diseases nor did they correlate with genes encoding major structural proteins of the cornea. CONCLUSIONS Murine CCT has been measured with a variety of different techniques, but only among a limited number of different strains. Here, pachymetry was established as an additional tool and used to conduct a broad survey of different strains of inbred mice. These results demonstrated that murine CCT was highly influenced by genetic background and established a baseline for future genetic approaches to further elucidate mechanisms regulating CCT and its disease associations.


Investigative Ophthalmology & Visual Science | 2014

Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243

Laura M. Dutca; Steven F. Stasheff; Adam Hedberg-Buenz; Danielle S. Rudd; Nikhil Batra; Frederick R. Blodi; Matthew S. Yorek; Terry Yin; Malini Shankar; Judith A. Herlein; Jacinth Naidoo; Lorraine K. Morlock; Noelle S. Williams; Randy H. Kardon; Michael G. Anderson; Andrew A. Pieper; Matthew M. Harper

PURPOSE Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system. METHODS Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber. The RGC physiology was evaluated using a multielectrode array and pattern electroretinogram (PERG). Histological analysis of RGC dendritic field and cell number were evaluated at the end of the study. Visual outcome measures also were evaluated based on treatment of mice with P7C3-S243 or vehicle control. RESULTS We show that deficits in neutral position PERG after blast-mediated TBI occur in a temporally bimodal fashion, with temporary recovery 4 weeks after injury followed by chronically persistent dysfunction 12 weeks later. This later time point is associated with development of dendritic abnormalities and irreversible death of RGCs. We also demonstrate that ongoing pathologic processes during the temporary recovery latent period (including abnormalities of RGC physiology) lead to future dysfunction of the visual system. We report that modification of PERG to provocative postural tilt testing elicits changes in PERG measurements that correlate with a key in vitro measures of damage: the spontaneous and light-evoked activity of RGCs. Treatment with P7C3-S243 immediately after injury and throughout the temporary recovery latent period protects mice from developing chronic visual system dysfunction. CONCLUSIONS Provocative PERG testing serves as a noninvasive test in the living organism to identify early damage to the visual system, which may reflect corresponding damage in the brain that is not otherwise detectable by noninvasive means. This provides the basis for developing an earlier diagnostic test to identify patients at risk for developing chronic CNS and visual system damage after TBI at an earlier stage when treatments may be more effective in preventing these sequelae. In addition, treatment with the neuroprotective agent P7C3-S243 after TBI protects from visual system dysfunction after TBI.


Investigative Ophthalmology & Visual Science | 2011

Anterior segment dysgenesis and early-onset glaucoma in nee mice with mutation of Sh3pxd2b.

Mao Mao; Adam Hedberg-Buenz; Demelza Koehn; Simon W. M. John; Michael G. Anderson

PURPOSE Mutations in SH3PXD2B cause Frank-Ter Haar syndrome, a rare condition characterized by congenital glaucoma, as well as craniofacial, skeletal, and cardiac anomalies. The nee strain of mice carries a spontaneously arising mutation in Sh3pxd2b. The purpose of this study was to test whether nee mice develop glaucoma. METHODS Eyes of nee mutants and strain-matched controls were comparatively analyzed at multiple ages by slit lamp examination, intraocular pressure recording, and histologic analysis. Cross sections of the optic nerve were analyzed to confirm glaucomatous progression. RESULTS Slit lamp examination showed that, from an early age, nee mice uniformly exhibited severe iridocorneal adhesions around the entire circumference of the eye. Presumably as a consequence of aqueous humor outflow blockage, they rapidly developed multiple indices of glaucoma. By 3 to 4 months of age, they exhibited high intraocular pressure (30.8 ± 12.5 mm Hg; mean ± SD), corneal opacity, and enlarged anterior chambers. Although histologic analyses at P17 did not reveal any indices of damage, similar analysis at 3 to 4 months of age revealed a course of progressive retinal ganglion cell loss, optic nerve head excavation, and axon loss. CONCLUSIONS Eyes of nee mice exhibit anterior segment dysgenesis and early-onset glaucoma. Because SH3PXD2B is predicted to be a podosome adaptor protein, these findings implicate podosomes in normal development of the iridocorneal angle and the genes influencing podosomes as candidates in glaucoma. Because of the early-onset, high-penetrance glaucoma, nee mice offer many potential advantages as a new mouse model of the disease.


PLOS ONE | 2014

Nano-Scale Morphology of Melanosomes Revealed by Small-Angle X-Ray Scattering

Thomas Gorniak; Tamás Haraszti; Vasyl M. Garamus; Andreas R. Buck; Tobias Senkbeil; Marius Priebe; Adam Hedberg-Buenz; Demelza Koehn; Tim Salditt; Michael Grunze; Michael G. Anderson; Axel Rosenhahn

Melanosomes are highly specialized organelles that produce and store the pigment melanin, thereby fulfilling essential functions within their host organism. Besides having obvious cosmetic consequences – determining the color of skin, hair and the iris – they contribute to photochemical protection from ultraviolet radiation, as well as to vision (by defining how much light enters the eye). Though melanosomes can be beneficial for health, abnormalities in their structure can lead to adverse effects. Knowledge of their ultrastructure will be crucial to gaining insight into the mechanisms that ultimately lead to melanosome-related diseases. However, due to their small size and electron-dense content, physiologically intact melanosomes are recalcitrant to study by common imaging techniques such as light and transmission electron microscopy. In contrast, X-ray-based methodologies offer both high spatial resolution and powerful penetrating capabilities, and thus are well suited to study the ultrastructure of electron-dense organelles in their natural, hydrated form. Here, we report on the application of small-angle X-ray scattering – a method effective in determining the three-dimensional structures of biomolecules – to whole, hydrated murine melanosomes. The use of complementary information from the scattering signal of a large ensemble of suspended organelles and from single, vitrified specimens revealed a melanosomal sub-structure whose surface and bulk properties differ in two commonly used inbred strains of laboratory mice. Whereas melanosomes in C57BL/6J mice have a well-defined surface and are densely packed with 40-nm units, their counterparts in DBA/2J mice feature a rough surface, are more granular and consist of 60-nm building blocks. The fact that these strains have different coat colors and distinct susceptibilities to pigment-related eye disease suggest that these differences in size and packing are of biological significance.


PLOS Genetics | 2010

Elevated oxidative membrane damage associated with genetic modifiers of Lyst-mutant phenotypes.

Colleen M. Trantow; Adam Hedberg-Buenz; Sachiyo Iwashita; Steven A. Moore; Michael G. Anderson

LYST is a large cytosolic protein that influences the biogenesis of lysosome-related organelles, and mutation of the encoding gene, LYST, can cause Chediak-Higashi syndrome. Recently, Lyst-mutant mice were recognized to also exhibit an iris disease resembling exfoliation syndrome, a common cause of glaucoma in humans. Here, Lyst-mutant iris phenotypes were used in a search for genes that influence Lyst pathways. In a candidate gene–driven approach, albino Lyst-mutant mice homozygous for a mutation in Tyr, whose product is key to melanin synthesis within melanosomes, exhibited complete rescue of Lyst-mutant iris phenotypes. In a genetic background–driven approach using a DBA/2J strain of congenic mice, an interval containing Tyrp1 enhanced Lyst-dependent iris phenotypes. Thus, both experimental approaches implicated the melanosome, an organelle that is a potential source of oxidative stress, as contributing to the disease phenotype. Confirming an association with oxidative damage, Lyst mutation resulted in genetic context–sensitive changes in iris lipid hydroperoxide levels, being lowest in albino and highest in DBA/2J mice. Surprisingly, the DBA/2J genetic background also exposed a late-onset neurodegenerative phenotype involving cerebellar Purkinje-cell degeneration. These results identify an association between oxidative damage to lipid membranes and the severity of Lyst-mutant phenotypes, revealing a new mechanism that contributes to pathophysiology involving LYST.


Physiological Genomics | 2010

Quantitative trait loci associated with murine central corneal thickness

Geoffrey D. Lively; Demelza Koehn; Adam Hedberg-Buenz; Kai Wang; Michael G. Anderson

The cornea is a specialized transparent tissue responsible for refracting light, serving as a protective barrier, and lending structural support to eye shape. Given its importance, the cornea exhibits a surprising amount of phenotypic variability in some traits, including central corneal thickness (CCT). More than a mere anatomic curiosity, differences in CCT have recently been associated with risk for glaucoma. Although multiple lines of evidence support a strong role for heredity in regulating CCT, the responsible genes remain unknown. To better understand the genetic basis of CCT variability, we conducted a genomewide quantitative trait locus (QTL) analysis with (C57BLKS/J x SJL/J) F(2) mice. This experiment identified a locus, Cctq1 (central corneal thickness QTL 1) on chromosome 7 (Chr 7; peak, 105 Mb), that is significantly associated with CCT. To independently test the biological significance of these results, (C57BLKS/J x NZB/B1NJ) F(2) mice were generated and analyzed for associations with Chr 7. This experiment identified a significant association at 131 Mb. Furthermore, low-generation congenic mice in which the Chr 7 QTL interval from the SJL strain was transferred onto the KS background had CCT values significantly higher than inbred KS mice. These results demonstrate that the genetic dependence of CCT in mice is a multigenic trait, which in these contexts is significantly regulated by a region on Chr 7. Future identification of the genes for these QTL will provide improved understanding of the processes regulating CCT and the pathophysiology of glaucoma.


Human Molecular Genetics | 2017

Primary congenital and developmental glaucomas

Carly J. Lewis; Adam Hedberg-Buenz; Adam P. DeLuca; Edwin M. Stone; Wallace L.M. Alward; John H. Fingert

Glaucoma is the leading cause of irreversible blindness worldwide. Although most glaucoma patients are elderly, congenital glaucoma and glaucomas of childhood are also important causes of visual disability. Primary congenital glaucoma (PCG) is isolated, non-syndromic glaucoma that occurs in the first three years of life and is a major cause of childhood blindness. Other early-onset glaucomas may arise secondary to developmental abnormalities, such as glaucomas that occur with aniridia or as part of Axenfeld-Rieger syndrome. Congenital and childhood glaucomas have strong genetic bases and disease-causing mutations have been discovered in several genes. Mutations in three genes (CYP1B1, LTBP2, TEK) have been reported in PCG patients. Axenfeld-Rieger syndrome is caused by mutations in PITX2 or FOXC1 and aniridia is caused by PAX6 mutations. This review discusses the roles of these genes in primary congenital glaucoma and glaucomas of childhood.


Scientific Reports | 2016

Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

Kasra Zarei; Todd E. Scheetz; Mark Christopher; Kathy Ann Miller; Adam Hedberg-Buenz; Anamika Tandon; Michael G. Anderson; John H. Fingert; Michael D. Abràmoff

We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice.


Experimental Eye Research | 2016

RetFM-J, an ImageJ-based module for automated counting and quantifying features of nuclei in retinal whole-mounts.

Adam Hedberg-Buenz; Mark Christopher; Carly J. Lewis; Kacie J. Meyer; Danielle S. Rudd; Laura M. Dutca; Kai Wang; Mona K. Garvin; Todd E. Scheetz; Michael D. Abràmoff; Matthew M. Harper; Michael G. Anderson

The present article introduces RetFM-J, a semi-automated ImageJ-based module that detects, counts, and collects quantitative data on nuclei of the inner retina from H&E-stained whole-mounted retinas. To illustrate performance, computer-derived outputs were analyzed in inbred C57BL/6J mice. Automated characterization yielded computer-derived outputs that closely matched manual counts. As a method using open-source software that is freely available, inexpensive staining reagents that are robust, and imaging equipment that is routine to most laboratories, RetFM-J could be utilized in a wide variety of experiments benefiting from high-throughput, quantitative, uniform analyses of total cellularity in the inner retina.


Pigment Cell & Melanoma Research | 2014

Support and challenges to the melanosomal casing model based on nanoscale distribution of metals within iris melanosomes detected by X‐ray fluorescence analysis

Thomas Gorniak; Tamás Haraszti; Heikki Suhonen; Yang Yang; Adam Hedberg-Buenz; Demelza Koehn; Ruth Heine; Michael Grunze; Axel Rosenhahn; Michael G. Anderson

Melanin within melanosomes exists as eumelanin or pheomelanin. Distributions of these melanins have been studied extensively within tissues, but less often within individual melanosomes. Here, we apply X‐ray fluorescence analysis with synchrotron radiation to survey the nanoscale distribution of metals within purified melanosomes of mice. The study allows a discovery‐based characterization of melanosomal metals, and, because Cu is specifically associated with eumelanin, a hypothesis‐based test of the ‘casing model’ predicting that melanosomes contain a pheomelanin core surrounded by a eumelanin shell. Analysis of Cu, Ca, and Zn shows variable concentrations and distributions, with Ca/Zn highly correlated, and at least three discrete patterns for the distribution of Cu vs. Ca/Zn in different melanosomes – including one with a Cu‐rich shell surrounding a Ca/Zn‐rich core. Thus, the results support predictions of the casing model, but also suggest that in at least some tissues and genetic contexts, other arrangements of melanin may co‐exist.

Collaboration


Dive into the Adam Hedberg-Buenz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge